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FIG. 1. Isotropic energy spectrum E(k) in the simulation with ! = 0, and reduced perpendicular energy spectra E(k⊥) in the
simulations with ! = 4 and 8. In all three simulations Re ≈ 5000, while Ro ≈ ∞, 0.03, and 0.015, respectively. Kolmogorov
and ∼ k−2

⊥ slopes are shown as a reference. The simulation without rotation has a spectrum with a narrow range of scales
arguably compatible with Kolmogorov scaling and followed by a bottleneck and a dissipative range, while the runs with
rotation display a steeper spectrum.

runs with ! = 4 and with ! = 8, and where θk = arctan(k⊥/k∥) is the colatitude in Fourier space.
For an isotropic flow (! = 0), contours of e(k⊥, k∥)/sin (θ k) are circles. As rotation is increased,
energy becomes more concentrated near the axis with k∥ = 0.

Based on the previous discussion on wave turbulence theory, and on previous studies of decor-
relation times in isotropic turbulence19–21 and in rotating flows,16 we can expect several timescales
to be relevant for our studies. These timescales depend on the wave vector, and assuming the shorter
one dominates the dynamics, different regions in the axisymmetric energy spectrum e(k⊥, k∥) can
be defined. The first timescale is the period of the waves

τω(k) = Cω

k
2!k∥

, (15)

where Cω is a dimensionless constant of order unity.
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FIG. 2. Isocontours of the axisymmetric energy spectrum e(k⊥, k∥)/sin (θ k) in the runs with ! = 4 (above) and 8 (below);
dark means larger energy density (in logarithmic scale). Lines indicating the modes for which the wave time becomes equal
to the sweeping time, and to the turnover time, are given as references. It should be noted that the energy does not accumulate
near the modes with τω = τNL, unlike what is expected in theories dealing with the concept of critical balance.24
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FIGURE 5. Angular distribution of energy spectra for different co-latitudes ✓ , averaged for
5 6 t 6 6; the Zeman wavenumber is indicated with an arrow. Slopes �7/2 (corresponding
to ⇠k

�5/2 scaling in units of the reduced energy spectra) and �8/3 (corresponding to
Kolmogorov ⇠k

�5/3 scaling) are shown as a reference. Note the recovery of isotropy beyond
k⌦ .
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FIGURE 6. Anisotropic spectra e(k?, kk = 0) (solid line) and h(k?, kk = 0) normalized by
kF (dashed line), both averaged for 5 6 t 6 6; the slopes �7/2 and �8/3 are shown as
references. Note the breakdown of the helicity spectrum at the Zeman wavenumber (indicated
by an arrow). The inset shows isolines of the axisymmetric helicity spectrum h(k?, kk)/ sin ✓
for small wavenumbers. Note the ellipsoidal isolines with lack of sign fluctuations for
|k| < k⌦ ⇡ 35, and the more circular lines, with rapid fluctuations in sign, indicated by
the increasingly noisier curves, for |k| > k⌦ ⇡ 35.

rather shallow for small co-latitudes to steep for large co-latitudes (kk = 0 modes).
Again, at scales smaller than the Zeman scale, isotropy recovers with all angular
spectra collapsing to the Kolmogorov spectrum (which corresponds to a �8/3 law in
those units) at those scales. A detail of the so-called slow manifold spectra (kk = 0)
is provided in figure 6 for the energy (solid line) and the helicity (dashed line).
The terminology of ‘slowness’ is of course linked to the fact that, for kk = 0, the

Mininni et al., JFM (2012)
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Fig. 1. Map of regimes of interaction between particles and turbulence. 

These two challenges resulted in the development of mathematical treatments 
with different levels of  sophistication to predict these flows. The following sections 
provide a brief review of these methods. It should be emphasized that the ultimate 
validation of  any of these methods is determined by comparing the predictions with 
data from well-defined experiments with acceptable quality. 

In an earlier review [8], particle-laden turbulent flows were classified from 
the point of view of  the type of  interaction between the particles and turbulence. 
The classification map of [8] is modified slightly and presented in Figure 1. The 
quantities on the dimensionless coordinates are defined below. 

Maxey and Riley (1983):


Coupling (see Elghobashi, 1994)

Particles in turbulent flows
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Stokes time:
damping time for the
dynamics of an inertial
particle in the Stokes
approximation

2. PARTICLE DYNAMICS
An incompressible !uid-velocity "eld u(x, t ) solves the Navier–Stokes equations,

∇ · u = 0 ,
D
Dt

u ≡ ∂tu + (u · ∇ )u = 1
"f

∇ · σ, 2.

with !uid density "f and stress tensor σ = −p1 + 2ν"fS. Here, p is pressure, ν is the kinematic
viscosity, and S = 1

2 (A + AT ) is the symmetric part of the !uid-velocity gradient tensor A, with
elements Aij = ∂ui/∂xj. Its antisymmetric part is denoted by O = 1

2 (A − AT ). The particles impose
boundary conditions upon Equation 2. For solid particles, the !uid velocity on any point of the
particle surface must equal the particle velocity of this point.

The hydrodynamic force Fh on a particle is given by the integral of the normal component of
σ over the particle surface. This nonlinear coupling between particle and !uid dynamics poses
fundamental dif"culties for modeling. One way out is to rely on particle-resolving numerical
simulations (Tenneti & Subramaniam 2014, Maxey 2017). For turbulent suspensions with many
particles, this is still very challenging. An alternative is to use empirical force models, obtained ei-
ther by "tting simulation results for a single particle to a model (Goossens 2019) or by solving the
Navier–Stokes equations in perturbation theory. The advantage of empirical parameterizations is
that one can go beyond the perturbative limit. Disadvantages are that results are uncertain outside
the "tting range, and that this procedure does not yield immediate insight into the mechanisms
at play.

A standard perturbative method is to neglect the convective term in Equation 2, starting from
the time-dependent Stokes equation. Including the gravitational acceleration g, one obtains for a
small sphere of radius a and velocity v (Maxey & Riley 1983, Landau & Lifshitz 1987):

Fh = 4π
3

"fa3
D
Dt

u(x, t ) − 6πν"fa
[
v − u(x, t )

]
− 4π

3
"fa3 g

−2π
3

"fa3
d
dt

[
v − u(x, t )

]
− 6

√
πν"fa2

∫ t

0

ds√
t − s

d
ds

[
v − u(x, s)

]
. 3.

On the right-hand side (RHS) we have (from left to right) terms for the pressure-gradient force;
Stokes’ force; Archimedes’ force, which combines with gravity Fg = mpg (with particle mass mp

and gravitational acceleration g) to give rise to the buoyancy force; the added-mass force; and the
history force arising from ∂tu in Equation 2. Equation 3 is frequently used to model the dynamics
of particles in turbulence (Brandt & Coletti 2022), sometimes emphasizing the signi"cance of
the history force (Daitche & Tél 2011, Olivieri et al. 2014, Guseva et al. 2016, Prasath et al.
2019). However, convective inertia—neglected in Equation 3—weakens history effects (Lovalenti
& Brady 1993). Faxén corrections to Equation 3 have been considered (Maxey & Riley 1983),
but for small particles they are of the same order as shear-induced inertia corrections, neglected
in Equation 3. Moreover, lift forces are neglected, and it is hard to justify the above form of the
added-mass force for turbulent !ow (Candelier et al. 2023). For these reasons, Equation 3 fails to
describe the dynamics of particles in turbulence in general.

For small spherical particles with mass density much larger than that of the !uid, all terms
except Stokes’ force are negligible, !uid inertia does not matter, and the equation of motion
simpli"es to

ẋ = v, v̇ = − [v − u(x, t )] /ϱp + g. 4.

Here we included gravity, dots denote time derivatives, and ϱ p = mp/(6πν"fa) is the Stokes time.
It is common to use this single-particle equation for many particles, neglecting particle–particle
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FIG. 1. (a) Ratio of the squared infinity norm of the vertical components of the Basset–Boussinesq force to the Stokes force, as a function of the buoyancy Stokes
number Sb for all particles and simulations. A linear relation with slope of 1 is shown as a reference. (b) Same for the infinity norms considering all components of
both forces.

FIG. 2. Ratio of the mean squared horizontal dispersion considering the history term (w/H) and without the history term (w/oH), as a function of time, for particles in flows with
different Froude and Stokes numbers: (a) St ! 0:3, (b) St ! 1, (c) St ! 3, and (d) St ! 6. The labels the in first panel provide the Brunt–V€ais€al€a frequency for all panels.
Values of Sb for the particles are given in each panel.
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structures are coupled together and that any attempt to
separate them into a weak wave turbulence coupled with a
quasi-2D slow dynamics in the plane perpendicular to the
rotation axis might fail to capture key properties for both
Eulerian and Lagrangian statistics. This is an important
remark for the phenomenology of Eulerian and Lagrangian
rotating turbulence and to further improve its modelization.
This paper is organized as follows. In Sec. II, we

discuss the numerical setup concerning both Eulerian
and Lagrangian properties. In Sec. III, we discuss the
Eulerian statistical properties at changing both Rossby and
Reynolds numbers, while in Sec. IV, we present the main
results concerning the dispersion of light or heavy particles.
Our conclusions follow in Sec. V.

II. NUMERICAL METHODS

A. Equation of motion for the Eulerian flow
and for the Lagrangian trajectories

The dynamics of an incompressible velocity field u in a
rotating reference frame with angular frequency Ω is given
by the three-dimensional Navier-Stokes equations (NSE):

∂u
∂t þ u · ∇uþ 2Ω × u ¼ −

∇p
ρf

þ νΔuþ f : ð1Þ

Here, ρf and ν are the density and the kinematic viscosity
of the fluid, respectively, 2Ω × u is the Coriolis force,
and f is an external force. For an incompressible fluid,
rotation breaks the statistical isotropy of the flow, but
not its homogeneity. Note that the centrifugal force
Ω ×Ω × ðr − r0Þ, which depends on the distance from
the position of the rotation axis r0, is absorbed in the
pressure p, which is determined by the incompressibility
condition ∇ · u ¼ 0. The regime of the flow is determined
by the Reynolds number, Reλ (see Table I), and by the
Rossby number previously defined. When Ro ≫ 1, the
turbulent motions have time scales much shorter than
the rotation time scale τΩ, and the flow is almost unaffected
by rotation. Rotation begins to affect the flow at
Ro ∼Oð1Þ, when τΩ is of the order of the eddy turnover
time at the forcing scale 1=ðu0kfÞ. A characteristic scale of
rotating turbulence is the Zeman wave number [9,43,44]
defined as the Fourier scale where the inertial turnover time,
τnlðkÞ ¼ ε−1=3k−2=3, becomes of the same order of τΩ, i.e.,
kΩ ∼ ðΩ3=εÞ1=2, ε being the energy transfer rate. For
Ro ≤ 1, the dynamics of the energy transfer will be largely
influenced by rotation. Importantly enough, as soon as the
Zeman wave number is larger than kf, an inverse energy
transfer develops for k ≤ kf, characterized by a strong
accumulation of the kinetic energy into 2D large-scale
structures. As a result, for Ro ≤ 1, the system develops a
forward cascade of energy, partially affected by the
presence of rotation, and a simultaneous inverse energy
cascade leading to a strong anisotropy. The need to resolve
both interval of scales is the major bottleneck for direct
numerical simulations.
In the reference frame rotating with angular frequencyΩ,

the equations for the trajectory rt and the velocity vðrt; tÞ of
a small sphere of radius R and density ρp suspended in the
fluid field u can be approximated as [45]

_rt ¼ v; ð2Þ

_v ¼ βDtu −
1

τp
ðv − uÞ − 2Ω × ðv − βuÞ

− ð1 − βÞfΩ × ½Ω × ðrt − r0Þ&g; ð3Þ

where r0 is the position of the rotation axis. Within the point-
particle model, the inertial dynamics is controlled
by two nondimensional parameters, the density ratio,
β ¼ 3ρf=ðρf þ 2ρpÞ, and the Stokes number, St ¼ τp=τη,
defined as the ratio between the particle relaxation time,
τp ¼ R2=3βν, and the Kolmogorov time τη. The first
term on the rhs of Eq. (3) is the fluid acceleration and
results from an estimate of the added-mass and pressure
gradients along the trajectory of the tracers. The second term
is the Stokes drag. With respect to the case of homogeneous

FIG. 2. 3D rendering of the evolution of two different puffs of
particles, one light (blue) and one heavy (black), released in a
turbulent flow at Rossby number Ro ¼ 0.25. Particles are
injected on the same rotation axis and with a velocity equal to
that of the underlying fluid. The dispersion dynamics follows two
different evolutions: light particles get trapped by the nearest
columnar vortex and diffuse mainly vertically, while heavy
particles tend to avoid the columnar structures and diffuse mainly
horizontally. In the bottom plane, we show the intensity of the
vertical vorticity averaged along the rotation axis. Bottom panel
shows an enlargement of the top panel close to one intense
vertical structure.
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Eulerian statistical properties at changing both Rossby and
Reynolds numbers, while in Sec. IV, we present the main
results concerning the dispersion of light or heavy particles.
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Here, ρf and ν are the density and the kinematic viscosity
of the fluid, respectively, 2Ω × u is the Coriolis force,
and f is an external force. For an incompressible fluid,
rotation breaks the statistical isotropy of the flow, but
not its homogeneity. Note that the centrifugal force
Ω ×Ω × ðr − r0Þ, which depends on the distance from
the position of the rotation axis r0, is absorbed in the
pressure p, which is determined by the incompressibility
condition ∇ · u ¼ 0. The regime of the flow is determined
by the Reynolds number, Reλ (see Table I), and by the
Rossby number previously defined. When Ro ≫ 1, the
turbulent motions have time scales much shorter than
the rotation time scale τΩ, and the flow is almost unaffected
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Ro ∼Oð1Þ, when τΩ is of the order of the eddy turnover
time at the forcing scale 1=ðu0kfÞ. A characteristic scale of
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defined as the Fourier scale where the inertial turnover time,
τnlðkÞ ¼ ε−1=3k−2=3, becomes of the same order of τΩ, i.e.,
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Ro ≤ 1, the dynamics of the energy transfer will be largely
influenced by rotation. Importantly enough, as soon as the
Zeman wave number is larger than kf, an inverse energy
transfer develops for k ≤ kf, characterized by a strong
accumulation of the kinetic energy into 2D large-scale
structures. As a result, for Ro ≤ 1, the system develops a
forward cascade of energy, partially affected by the
presence of rotation, and a simultaneous inverse energy
cascade leading to a strong anisotropy. The need to resolve
both interval of scales is the major bottleneck for direct
numerical simulations.
In the reference frame rotating with angular frequencyΩ,
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where r0 is the position of the rotation axis. Within the point-
particle model, the inertial dynamics is controlled
by two nondimensional parameters, the density ratio,
β ¼ 3ρf=ðρf þ 2ρpÞ, and the Stokes number, St ¼ τp=τη,
defined as the ratio between the particle relaxation time,
τp ¼ R2=3βν, and the Kolmogorov time τη. The first
term on the rhs of Eq. (3) is the fluid acceleration and
results from an estimate of the added-mass and pressure
gradients along the trajectory of the tracers. The second term
is the Stokes drag. With respect to the case of homogeneous

FIG. 2. 3D rendering of the evolution of two different puffs of
particles, one light (blue) and one heavy (black), released in a
turbulent flow at Rossby number Ro ¼ 0.25. Particles are
injected on the same rotation axis and with a velocity equal to
that of the underlying fluid. The dispersion dynamics follows two
different evolutions: light particles get trapped by the nearest
columnar vortex and diffuse mainly vertically, while heavy
particles tend to avoid the columnar structures and diffuse mainly
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shows an enlargement of the top panel close to one intense
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Figure 1. Sketch of the experimental setup.

protocols are known to produce higher turbulence levels than classical passive grids, with
still good homogeneity and isotropy properties [11–13]. The mean velocity of the wind
varies from 3.4 to 7.6 m/s, corresponding to a range of Reynolds number (based on Taylor
micro-scale) Rλ ∈ [230; 400]. Table 1summarises the main turbulence parameters of the
flow generated at the measurement volume location (3 m downstream the active grid) for
the six mean wind velocities investigated.

As inertial particles, we use small water droplets generated by 36 high-pressure
atomisers (distributed on a 6 × 6 mesh with identical spacing than the grid) located in a
transverse plane 15 cm downstream the grid. The droplet size distribution (measured with a
Spraytec diffractometer from Malvern Instruments Ltd.) is peaked around a most probable
droplet diameter of the order of Dp ∼ 50 µm, but is relatively poly-disperse (the standard
deviation of particle diameter is σDp

$ 35 µm. We have checked that this size distribution
is robust and does not depend significantly on the mean wind velocity. Particles, therefore,
always have a sub-Kolmogorov size (see Table 1). The volume fraction of water droplets is
in the range φv = [5 × 10−5 to 2 × 10−4] (the lower the average wind velocity, the larger
the volume fraction). We define the droplets Stokes number as the ratio St = τ p/τ η, with τ η

the carrier flow dissipation scale estimated from hot-wire anemometry (see Table 1) and

Table 1. Experimental parameters: Reynolds number based on
Taylor micro-scale (Rλ), mean wind velocity (U), energy injection
scale (L), dissipation scale (η), energy dissipation rate per unit mass
(ε) and Stokes number (St).

Reλ U (m/s) L (cm) η (µm) ε (m3/s3) St

234 3.4 13.0 280 .69 2.1
264 4.0 13.2 240 1.2 3.3
295 4.8 13.5 208 2.0 4.3
331 5.7 13.8 178 3.4 5.8
357 6.4 14.0 160 4.7 6.6
400 7.6 14.3 140 7.7 9.9
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Figure 2. (a) Example of raw image of water droplets in the active-grid-generated turbulence.
(b) Corresponding Voronoı̈ diagram and detected clusters.

found that (1) Reynolds and Stokes number effects essentially influence small and highly
concentrated areas (left tail of the PDFs in Figure 3(a)) while large and depleted areas (right
tail) remain independent of Reynolds and Stokes numbers and (2) the centred–reduced PDFs
of log (V) are well approximated by a Gaussian distribution, suggesting that Voronoı̈ area
distributions are close to log-normal. Finally, Figure 4 shows how σV varies with the particle
Stokes number St. We recall that the standard deviation of 2D Voronoı̈ cells for an RPP can
be obtained analytically, being σ RPP

V = 0.53. Higher values of σV indicate the presence of
clustering, and the higher σV the stronger the clustering. Figure 4 shows that clustering in
active grid experiments is significantly more intense than what was observed in previous
measurements by Monchaux et al. [15] at lower Reynolds numbers. Interestingly, though
σV changes by less than 10% over the different active grid experiments, the present data-set
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Figure 2. (a) Example of raw image of water droplets in the active-grid-generated turbulence.
(b) Corresponding Voronoı̈ diagram and detected clusters.

found that (1) Reynolds and Stokes number effects essentially influence small and highly
concentrated areas (left tail of the PDFs in Figure 3(a)) while large and depleted areas (right
tail) remain independent of Reynolds and Stokes numbers and (2) the centred–reduced PDFs
of log (V) are well approximated by a Gaussian distribution, suggesting that Voronoı̈ area
distributions are close to log-normal. Finally, Figure 4 shows how σV varies with the particle
Stokes number St. We recall that the standard deviation of 2D Voronoı̈ cells for an RPP can
be obtained analytically, being σ RPP

V = 0.53. Higher values of σV indicate the presence of
clustering, and the higher σV the stronger the clustering. Figure 4 shows that clustering in
active grid experiments is significantly more intense than what was observed in previous
measurements by Monchaux et al. [15] at lower Reynolds numbers. Interestingly, though
σV changes by less than 10% over the different active grid experiments, the present data-set
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Figure 3 Illustration of the evolution of a droplet size distribution during the
onset of the collision-coalescence process. Figure adapted fromBerry&Reinhardt
(1974) and Lamb (2001), courtesy of D. Lamb, Penn State University.

collision-coalescence growth process (e.g., Rogers & Yau 1989), again accen-
tuating the importance of understanding the details of processes that influence the
droplet size distribution.
The problem of large-drop production to initiate the formation of rain has been

a focal point of cloud physics research for several decades (see texts by Cotton
& Anthes 1989, Pruppacher & Klett 1997, and Rogers & Yau 1989 for additional
discussion). Often the discussion has been focused on the width of the droplet size
distribution,with broaddistributions tending to increase the gravitationally induced
collision rate. This, of course, goes against the tendency of condensation growth
to cause a size distribution to become narrower with time. Hence, these related
concepts have driven longstanding efforts to compare calculated and measured
droplet size distributions in convective clouds (e.g., see Cotton & Anthes 1989).
In general, observed size distributions are significantly broader than calculated
(e.g., Austin et al. 1985, Brenguier 1990, Hill & Choularton 1985). Some of the
“broadening” is due to instrumental artifacts, but recent measurements suggest that
there still is a discrepancy even when instrumental effects are accounted for and
measurements are confined to thermodynamically isolated regions of cloud where
mixing and dilution has not altered the size distribution (Brenguier & Chaumat
2001, Lasher-Trapp & Cooper 2000). Particularly interesting are the observations
of “super-adiabatic” droplets, which are larger than the maximum size predicted
by models of condensation growth in an isolated rising volume of cloud (e.g., Hill
& Choularton 1985, Brenguier & Chaumat 2001).
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Hunga Tonga-Hunga Ha’apai, January 15, 2022

Hunga-Tonga Hunga Ha’apai (HTHH), a submarine cal-
dera volcano of the Tonga archipelago1–3, erupted explo-
sively on January 15, 2022, with power unprecedented

since the advent of modern instrumental recording4–6. Record-
breaking characteristics of this eruption include the production of
a 57–58 km tall plume7, the umbrella expanding to a diameter of
400 km in <1 h8, and the generation of multiple geophysical waves
propagating globally through the atmosphere, the ocean, and the
solid earth4–6,9–11. Analyses of these geophysical waves suggested
multiple bursts in several hours5,6,10–12. Purkis et al.13 investigated
direct tsunami from the explosive volcanic events that hit the
Kingdom of Tonga and identified five blasts in 1 h, of which the
last two at 4:18 and 4:56 had larger energy (4 Mt and 15 Mt,
respectively) than the first three (0.5 Mt or smaller). They
emphasized that explosion sequences derived from the global-
scale waves and the near-field events were different. The huge
umbrella cloud obscured satellite view of the activity at the vent
preventing further constraining of the explosive sequence14.

Another prominent atmospheric effect caused by this eruption is
the highest concentration of lightning events ever recorded, peaking
nearly 400,000 strokes over 6 h15, or above 5000 strokes/min14.
Lightning marked the inception of the eruption and evolved in
space and time producing characteristic ring patterns centered over
the volcanic vent8,16,17 (Fig. 1). Gaps in the volume-filling lightning
activity of large supercell storms have been described before18,19
and interpreted as due to localized regions of strong updraft within
the thunderstorm. However, meteorological lightning discharges
have never showed such regular symmetry, extension, or periodicity
as those produced during the HTHH eruption. The origin of this
phenomenon poses an interesting question, and its answer could
also provide useful information on eruption activity.

Here we investigate the hypothesis that particle clustering in
the turbulent flow can give rise to the observed lightning ring

structures. We perform three-dimensional numerical simulations
of a turbulent plume with solid particles in a stratified atmo-
sphere, considering a simple single-phase incompressible fluid in
a linearly stratified atmosphere under the Boussinesq approx-
imation, and passive heavy particles with linear drag to model a
particle laden flow (see the ref. 20 for more realistic multiphase
plume models). Our aim is to constrain the physical conditions
that generate the ring structure in a convective plume, rather than
to accurately simulate the HTHH eruption. In order to constrain
the physical conditions generating the ring structures, we analyze
the relation between turbulence production and particle accu-
mulation (or, indirectly, lightning patterns and volcanic plume
parameters). Our model shows that particles’ ring structures are
determined by the turbulence in the eruptive column and
umbrella cloud due to the interaction with the still atmosphere
and the turbulent-induced particle clustering, as they generate
favorable conditions for charge concentration by particle colli-
sion. We show that the extension, persistence and decay of the
lightning ring structures can be related to in-plume fluid
dynamics parameters otherwise inaccessible through direct
measurements and that they can be used as an indicator of suc-
cessive explosions obscured to satellite observation by the
expansion of the plume umbrella.

Background
Volcanic activity. The HTHH submarine caldera has a historic
record of violent explosive eruptions often propelled by the
interaction of andesitic magma with ocean water1,2. After seven
years of repose, HTHH volcano erupted first in mid-December,
2021, with Surtseyan explosion of similar characteristics of those
recorded in 2009 and 2014–201516. After about a week of pause,
the activity resumed on 13 January 2022 (all times and days
hereafter are in UTC) producing a 11 km tall plume accompanied

Fig. 1 Observed lightning rings during the January 15, 2022, eruption of Hunga-Tonga Hunga-Ha’apai volcano. a Lightning sources (magenta dots) in
1 min from the indicated time superimposed on the temporally nearest Himawari-8 satellite infrared images (downloaded from NICT-Japan and processed
at ERI, U-Tokyo). Note that Himawari-8 takes images of the area at 7.5 min after every 10 min (e.g., 4:17.5, 4:27.5, etc.). b Temporal variation of the east-
west slice (5-km around the center) of the structure like (a). c The lightning source number density (counts/km2/min) as a function of time and radial
distance. Although Bór et al.14 presented similar plots for event rate per distance, we show event rate per area to compare the data with our numerical
results. Some expanding features are noticed (dashed lines assuming 65 m s−1 and arrows), which are discussed in the “Effects of gravity waves and of
particle settling” section.
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eruption parameters from observations of cloud and lightning
dynamics in the future. We emphasize that tracking lightning
rings in volcanic plumes is particularly effective in inferring not
only the opening explosive episode of a volcanic eruption but also
subsequent explosive pulses during its course. For the HTHH
eruption, uncovering this sequence is essential to understanding
when and how disastrous events like tsunamis, damage to sub-
marine cables, and caldera collapse occurred.

Methods
Numerical simulations and approximations. The flow is
described by the Boussinesq equations

∂tuþ u " ∇u ¼ $∇ p=ρ0
! "

$ g=ρ0
! "

ρ0ẑ þ ν∇2u; ð2Þ

∂tρ
0 þ u " ∇ρ0 ¼ ρ0N

2=g
! "

u " ẑ þ κ∇2ρ0 þ s; ð3Þ

where u is the incompressible fluid velocity (∇ ⋅ u= 0), and ρ0 is
the mass density fluctuation around the background linear stra-
tification

ρ ¼ ρ0 þ ðd!ρ=dzÞðz $ z0Þ þ ρ0: ð4Þ

In these equations ρ0 is the reference fluid density at the
reference height z0, d!ρ=dz<0 is the uniform background density
gradient (with the convention of z > 0 upwards), ẑ is a unit vector
along the z-axis, g is the acceleration of gravity, p is the correction
to the hydrostatic pressure, ν is the kinematic viscosity, κ is the
diffusivity, s is a source of density fluctuations, and N is the
Brunt-Väisälä frequency. In terms of these parameters,
N2 ¼ $ðg=ρ0Þðd!ρ=dzÞ. The kinematic viscosity was chosen to
have the Kolmogorov dissipation scale η ¼ ðν2=hω2iÞ1=4 well
resolved (i.e., larger than the smallest scale resolved by the
simulation), where ω=∇ × u is the vorticity. Note that the r.m.s.
value of the vorticity defines the Kolmogorov dissipation time as
τη ¼ hω2i$1=2. We also assume the turbulent Prandtl number is
of order unity and use κ= ν64.

The incompressible Boussinesq equations can be rewritten
using a change of variables for the density fluctuations,
ζ ¼ gρ0=ðρ0NÞ, in such a way that only ν, κ, and N must be
prescribed (see below). The correction to the hydrostatic pressure
per unit mass density, p/ρ0, is obtained from the incompressibility
condition, ∇2ðp=ρ0Þ ¼ $∇ " ðu " ∇uþ Nζ ẑÞ. Thus, the gas

thermodynamics is decoupled from the evolution of u and ρ0,
and not considered in the time evolution of our model. The
reference fluid density ρ0 can also be chosen arbitrarily. We note
that the Boussinesq approximation with linear density variation is
not strictly valid for flows deeper than a fraction of the density
scale height, Hρ= gN−2. Better models can be obtained using,
e.g., the anelastic approximation. However, we are interested in a
minimal model for lightning ring formation in the umbrella
cloud, and follow similar approximations as those used in the
study of moist convection57.

The source s in Eq. (3) is a localized Gaussian ellipsoid of light
(hot) fluid at the bottom of the domain, in order to generate a
turbulent plume in the stratified flow. A buffer region was left
below the source to have fluid at rest and prevent possible
artifacts associated to the periodic boundary conditions (the
simulation was also stopped before a strong large-scale circulation
with the size of the domain was excited by the periodic boundary
conditions). The amplitude of the source is constant in time and
was set to have in the steady state typical upward velocities in the
center of the plume as those in an eruption.

Particles in the simulations satisfy the heavy point particle
approximation of the Maxey-Riley equation65,

dv
dt

¼
1
τp

uðxp; tÞ $ v
h i

$ g 1$
ρ
ρp

 !
ẑ; ð5Þ

where τp is the particles’ Stokes time, v is the particle velocity,
u(xp, t) is the fluid velocity at the particle position xp, ρp is the
particle density, and ρ/ρp ≈ ρ0/ρp. This equation is valid for small
particles such that the Reynolds number of the particles satisfies
Rep ¼ vsdp=ν<1, where vs= ∣v− u∣ is the slip velocity and dp is
the particles’ diameter. For small heavy spherical particles the
particles’ Stokes time and radius are related by
τp ¼ 2ρpd

2
p=ð9νρ0Þ. Under these approximations, the settling

velocity of the particles (when the fluid is at rest) is w ≈ gτp(1−
ρ0/ρp)66. In all simulations we neglected the effect of gravity and
the settling velocity, except for one simulation discussed in the
“Effects of gravity waves and of particle settling section”.

Equations (2), (3), and (5) were solved numerically with a
high-order parallel pseudo-spectral method and high-order
interpolation schemes using the GHOST code67. Three-
dimensional renderings of vector fields and particles were done

Fig. 6 Schematic diagram of the formation of the plume in the simulation and of the resulting particle clustering. The buoyancy source at the bottom of
the domain, shown in red, generates the plume. Vorticity, and turbulence, is stronger in two regions: in the outer region of the ascending jet, where velocity
gradients are large, and in an annular region with radius of ≈40 km. These two regions of high vorticity correspond to regions of particle clustering for all
particles considered. Collisions between these particles could then result in strong electrification of these regions. In the simulations the accumulation of
particles is seen above 10 km.
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hand, the ring expansion speed is ≈ 65 m s−1 in both simulation
(Fig. 4a) and observation (Fig. 1c), which is much slower than the
gravity waves (horizontal phase speeds of 240–270 m s−1 in the
HTHH eruption5, and of ≈ 200 m s−1 in the simulation for
horizontal scales of ≈20 km).

The spatial-temporal distribution of lightning activity in the
HTHH plume shows multiple successive radial expansions of
lightning ring structures as highlighted by the dashed lines and
arrows in Fig. 1b and c. Some of these alignments originate from
the vent area (dashed lines). The others appear at a distance from
the vent and propagate further away (arrows). The numerical
result also exhibits outward movement of max{NA,C} (red circles
in Fig. 4); the first one from the center and the subsequent ones
at a distance of about 40 km. Note that the numerical simulation
assumes a constant flux after the onset, thus implying that not all
expanding rings necessarily indicate new flow injection nor
unsteady mass discharge rate at the source. On the contrary,
rings originating from the vent area (in the observational data)
likely mark the onset of a new explosion. Based on these
observations and the qualitative behavior in the simulations, we
can infer that significant explosions at HTHH occurred in several
minutes around 4:14, 4:51, 5:34, and 8:33 (Fig. 1c). Interestingly,
the first three times are comparable with the observed major
earthquakes at HTHH, resolved by the global seismic network at
4:07:53–4:14:45 (two M4.7 events and one M5.8), 4:40:37 (M4.8)
and 5:30:17 (M4.7)63. Also, the first two times may be associated
with the two energetic blasts at 4:18 and 4:56, inferred from the
direct tsunami hitting the Kingdom of Tonga13. The last one may
be associated with the strong eruption detected by infrasound
and hydroacoustic stations at 8:3111. Around 6:00, before 8:00,
and around 8:15, smaller explosions might have occurred and
produced rings not resolvable in the current dataset.

Conclusions
Our numerical simulations for a buoyant plume in a linearly and
weakly stratified medium under the Boussinesq approximation
with heavy passive point particles have shown that the turbulent
clustering mechanism works to concentrate particles in regions of
high turbulence intensity surrounding the updraft, in the ring,
and in the umbrella cloud (Fig. 6). A high probability of particle
collisions is expected in these regions from kinetic theory (Fig. 3).
We believe our simulations capture the essential mechanism
underlying the lightning ring observed in large volcanic erup-
tions, including the recent HTHH eruption.

Our minimal simulations are able to reproduce the observed
radial expansion of the umbrella cloud as well as the oscillations
of the lightning ring. While both umbrella cloud and lightning
ring initially expand together as∝ t, later on the umbrella
expands as∝ t0.7 and the lightning ring repeatedly expands and
contracts around a fixed radial distance. Most remarkably, our
simulation shows that expansion and contraction of the lighting
ring happens even if the buoyancy flux at the source remains
constant. Based on the results, we distinguish the observed
lightning ring expansions due to new explosions from those due
to spontaneous fluctuations, and infer the occurrence of sig-
nificant explosions in several minutes around 4:51, 5:34, and 8:33
UTC on 15 January 2022, otherwise obscured by the expanding
plume and umbrella cloud from the primary explosion around
4:14.

Numerical models and observations of volcanic plumes have
advanced significantly in recent years, and more precise and
detailed volcanic lightning data are becoming available. This
study proposes a possible mechanism for the formation and
evolution of lightning rings in volcanic plumes. Incorporating this
mechanism into numerical models that include more realistic
conditions (e.g., the presence of vapors, realistic atmospheric
conditions, the supersonic injection of hot material at the source,
and non-steady mass discharge), may allow estimation of

Fig. 4 Evolution of the radial structure in a plume. a The density of species
A, nA(r, t), showing a prominent peak near the axis of the plume and
multiple radiating `fingers'. The white solid line indicates the border of the
cloud as a function of time, and the red dots indicate the position of the
second maximum observed in Fig. 3 as a function of time. A linear time
dependence is indicated by the straight blue line at early times, which also
serves as a reference for the evolution of the rings. b The radius of the
cloud and of maxfNA;Cg as a function of time in log-log scale. Two power
laws at later times are shown as ref. 45 (see also the HTHH case8). Note
that while the cloud keeps expanding in time, the annular structure
fluctuates around a mean radius of≈ 40 km.

Fig. 5 Gravity effects. a Power spectrum of the particles' velocities for
species C, for the x and z components of the velocity. A Kolmogorov
spectrum is shown as a reference. The vertical dashed line indicates the
Brunt-Väissälä frequency. b Density of particles (normalized by the mean
density) for species A 40 min after the start of the simulation, with and
without gravity.
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Hunga-Tonga Hunga Ha’apai (HTHH), a submarine cal-
dera volcano of the Tonga archipelago1–3, erupted explo-
sively on January 15, 2022, with power unprecedented

since the advent of modern instrumental recording4–6. Record-
breaking characteristics of this eruption include the production of
a 57–58 km tall plume7, the umbrella expanding to a diameter of
400 km in <1 h8, and the generation of multiple geophysical waves
propagating globally through the atmosphere, the ocean, and the
solid earth4–6,9–11. Analyses of these geophysical waves suggested
multiple bursts in several hours5,6,10–12. Purkis et al.13 investigated
direct tsunami from the explosive volcanic events that hit the
Kingdom of Tonga and identified five blasts in 1 h, of which the
last two at 4:18 and 4:56 had larger energy (4 Mt and 15 Mt,
respectively) than the first three (0.5 Mt or smaller). They
emphasized that explosion sequences derived from the global-
scale waves and the near-field events were different. The huge
umbrella cloud obscured satellite view of the activity at the vent
preventing further constraining of the explosive sequence14.

Another prominent atmospheric effect caused by this eruption is
the highest concentration of lightning events ever recorded, peaking
nearly 400,000 strokes over 6 h15, or above 5000 strokes/min14.
Lightning marked the inception of the eruption and evolved in
space and time producing characteristic ring patterns centered over
the volcanic vent8,16,17 (Fig. 1). Gaps in the volume-filling lightning
activity of large supercell storms have been described before18,19
and interpreted as due to localized regions of strong updraft within
the thunderstorm. However, meteorological lightning discharges
have never showed such regular symmetry, extension, or periodicity
as those produced during the HTHH eruption. The origin of this
phenomenon poses an interesting question, and its answer could
also provide useful information on eruption activity.

Here we investigate the hypothesis that particle clustering in
the turbulent flow can give rise to the observed lightning ring

structures. We perform three-dimensional numerical simulations
of a turbulent plume with solid particles in a stratified atmo-
sphere, considering a simple single-phase incompressible fluid in
a linearly stratified atmosphere under the Boussinesq approx-
imation, and passive heavy particles with linear drag to model a
particle laden flow (see the ref. 20 for more realistic multiphase
plume models). Our aim is to constrain the physical conditions
that generate the ring structure in a convective plume, rather than
to accurately simulate the HTHH eruption. In order to constrain
the physical conditions generating the ring structures, we analyze
the relation between turbulence production and particle accu-
mulation (or, indirectly, lightning patterns and volcanic plume
parameters). Our model shows that particles’ ring structures are
determined by the turbulence in the eruptive column and
umbrella cloud due to the interaction with the still atmosphere
and the turbulent-induced particle clustering, as they generate
favorable conditions for charge concentration by particle colli-
sion. We show that the extension, persistence and decay of the
lightning ring structures can be related to in-plume fluid
dynamics parameters otherwise inaccessible through direct
measurements and that they can be used as an indicator of suc-
cessive explosions obscured to satellite observation by the
expansion of the plume umbrella.

Background
Volcanic activity. The HTHH submarine caldera has a historic
record of violent explosive eruptions often propelled by the
interaction of andesitic magma with ocean water1,2. After seven
years of repose, HTHH volcano erupted first in mid-December,
2021, with Surtseyan explosion of similar characteristics of those
recorded in 2009 and 2014–201516. After about a week of pause,
the activity resumed on 13 January 2022 (all times and days
hereafter are in UTC) producing a 11 km tall plume accompanied

Fig. 1 Observed lightning rings during the January 15, 2022, eruption of Hunga-Tonga Hunga-Ha’apai volcano. a Lightning sources (magenta dots) in
1 min from the indicated time superimposed on the temporally nearest Himawari-8 satellite infrared images (downloaded from NICT-Japan and processed
at ERI, U-Tokyo). Note that Himawari-8 takes images of the area at 7.5 min after every 10 min (e.g., 4:17.5, 4:27.5, etc.). b Temporal variation of the east-
west slice (5-km around the center) of the structure like (a). c The lightning source number density (counts/km2/min) as a function of time and radial
distance. Although Bór et al.14 presented similar plots for event rate per distance, we show event rate per area to compare the data with our numerical
results. Some expanding features are noticed (dashed lines assuming 65 m s−1 and arrows), which are discussed in the “Effects of gravity waves and of
particle settling” section.
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KE models:
kinetic equation for
distribution of particle
positions and
velocities, requiring
closure

Maxey’s centrifuge:
an effect whereby
particle inertia expels
heavy particles from
vortices

expansion, one obtains
{
∂t + vi∂xi − 1

τp
∂vivi − 1

τp
∂vi

[
∂v jµi j (x, t ) + ∂x jλi j (x, t ) − κi(x, t )

]}
P(x, v; t ) = 0. 6.

Here µij, λij, and κ i are unknown coef!cients that require closure approximations, and summa-
tion over repeated indices is implied. This approach yields accurate numerical descriptions of
single-particle properties, also in spatially inhomogeneous turbulent "ow (Reeks 2021). Zaichik &
Alipchenkov (2003) derived analogous equations for two-particle statistics. Such KE models can
be closed using DNS results for the unknown coef!cients (Bragg & Collins 2014a,b) to obtain
numerical results for the statistics of separations and relative velocities between heavy particles in
turbulence. In Sections 6 and 7, we compare the corresponding results to those of statistical mod-
els based on Equation 5. In the white-noise limit, the kinetic equation for particle separations and
relative velocities reduces to a Fokker–Planck equation, of similar form as the one-dimensional
equation analyzed by Gustavsson et al. (2008).

5. PREFERENTIAL SAMPLING
5.1. Maxey’s Centrifuge
Heavy particles can detach from the "ow; they are not Lagrangian "uid elements. This
leads to a bias in the statistical properties of the "uid-velocity gradients evaluated along
particle paths (Maxey 1987), called preferential sampling. Maxey obtained an approximate
equation of motion by expanding Equation 4 at small St. For Sv = 0, this yields d

dt x ≈
vp(x, t ) = u − τp

D
Dt u. Since the effective particle-velocity !eld vp(x, t ) is compressible, ∇ · vp =

−τpTrA2 = −τp
(
TrS2 − TrOTO

)
$= 0, he concluded that small-St particles are more likely to ex-

plore the sinks of vp(x, t )—regions of large strain and small vorticity. Maxey’s centrifuge effect is
illustrated in Figure 2a, showing a snapshot of particle positions together with the magnitude of
vorticity ϱ ≡ |∇ ∧ u(x, t )| =

≃
2TrOTO. Heavy particles tend to avoid connected regions of high

vorticity of linear sizes smaller than ∼10η (Section 4).
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Figure 2
Preferential sampling. (a) Heavy particles avoid vortices. Shown are direct numerical simulation (DNS) results for particle positions in a
thin slice of 3D con!guration space. Different levels of gray re"ect different particle depths within the slice [data from Bec et al. (2014)
with Stokes number St = 1 and Reynolds number Reλ ≈ 460]. Also shown is the magnitude ϱ of vorticity (see text); η is the
Kolmogorov scale. (b) Average of TrA2, where A is the "uid-velocity gradient tensor, along inertial-particle paths versus St. Shown are
DNS results from Ireland et al. (2016a) (squares and diamonds) and Bec et al. (2014) (triangles), data from simulations of the single-scale
model (SSM) (Equation 5) for Kubo number Ku = 10 (circles), and the prediction of perturbation theory τ 2

η 〈TrA2〉 = cSt (solid line),
with τη the Kolmogorov timescale. The numerical prefactor c was !tted. (c) Voids in the spatial distribution of cloud droplets. Data
from Karpińska et al. (2019). Image provided by Eberhard Bodenschatz.
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Maxey (1987): Maxey’s centrifuge 
for St<1. Particles tend to be 
expelled from vortices.


Coleman and Vassilicos (2009): 
Sweep-stick mechanism. Particles 
accumulate at points of zero 
Lagrangian acceleration.
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expansion, one obtains
{
∂t + vi∂xi − 1
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∂vivi − 1

τp
∂vi

[
∂v jµi j (x, t ) + ∂x jλi j (x, t ) − κi(x, t )

]}
P(x, v; t ) = 0. 6.

Here µij, λij, and κ i are unknown coef!cients that require closure approximations, and summa-
tion over repeated indices is implied. This approach yields accurate numerical descriptions of
single-particle properties, also in spatially inhomogeneous turbulent "ow (Reeks 2021). Zaichik &
Alipchenkov (2003) derived analogous equations for two-particle statistics. Such KE models can
be closed using DNS results for the unknown coef!cients (Bragg & Collins 2014a,b) to obtain
numerical results for the statistics of separations and relative velocities between heavy particles in
turbulence. In Sections 6 and 7, we compare the corresponding results to those of statistical mod-
els based on Equation 5. In the white-noise limit, the kinetic equation for particle separations and
relative velocities reduces to a Fokker–Planck equation, of similar form as the one-dimensional
equation analyzed by Gustavsson et al. (2008).

5. PREFERENTIAL SAMPLING
5.1. Maxey’s Centrifuge
Heavy particles can detach from the "ow; they are not Lagrangian "uid elements. This
leads to a bias in the statistical properties of the "uid-velocity gradients evaluated along
particle paths (Maxey 1987), called preferential sampling. Maxey obtained an approximate
equation of motion by expanding Equation 4 at small St. For Sv = 0, this yields d

dt x ≈
vp(x, t ) = u − τp

D
Dt u. Since the effective particle-velocity !eld vp(x, t ) is compressible, ∇ · vp =

−τpTrA2 = −τp
(
TrS2 − TrOTO

)
$= 0, he concluded that small-St particles are more likely to ex-

plore the sinks of vp(x, t )—regions of large strain and small vorticity. Maxey’s centrifuge effect is
illustrated in Figure 2a, showing a snapshot of particle positions together with the magnitude of
vorticity ϱ ≡ |∇ ∧ u(x, t )| =

≃
2TrOTO. Heavy particles tend to avoid connected regions of high

vorticity of linear sizes smaller than ∼10η (Section 4).
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Figure 2
Preferential sampling. (a) Heavy particles avoid vortices. Shown are direct numerical simulation (DNS) results for particle positions in a
thin slice of 3D con!guration space. Different levels of gray re"ect different particle depths within the slice [data from Bec et al. (2014)
with Stokes number St = 1 and Reynolds number Reλ ≈ 460]. Also shown is the magnitude ϱ of vorticity (see text); η is the
Kolmogorov scale. (b) Average of TrA2, where A is the "uid-velocity gradient tensor, along inertial-particle paths versus St. Shown are
DNS results from Ireland et al. (2016a) (squares and diamonds) and Bec et al. (2014) (triangles), data from simulations of the single-scale
model (SSM) (Equation 5) for Kubo number Ku = 10 (circles), and the prediction of perturbation theory τ 2

η 〈TrA2〉 = cSt (solid line),
with τη the Kolmogorov timescale. The numerical prefactor c was !tted. (c) Voids in the spatial distribution of cloud droplets. Data
from Karpińska et al. (2019). Image provided by Eberhard Bodenschatz.
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