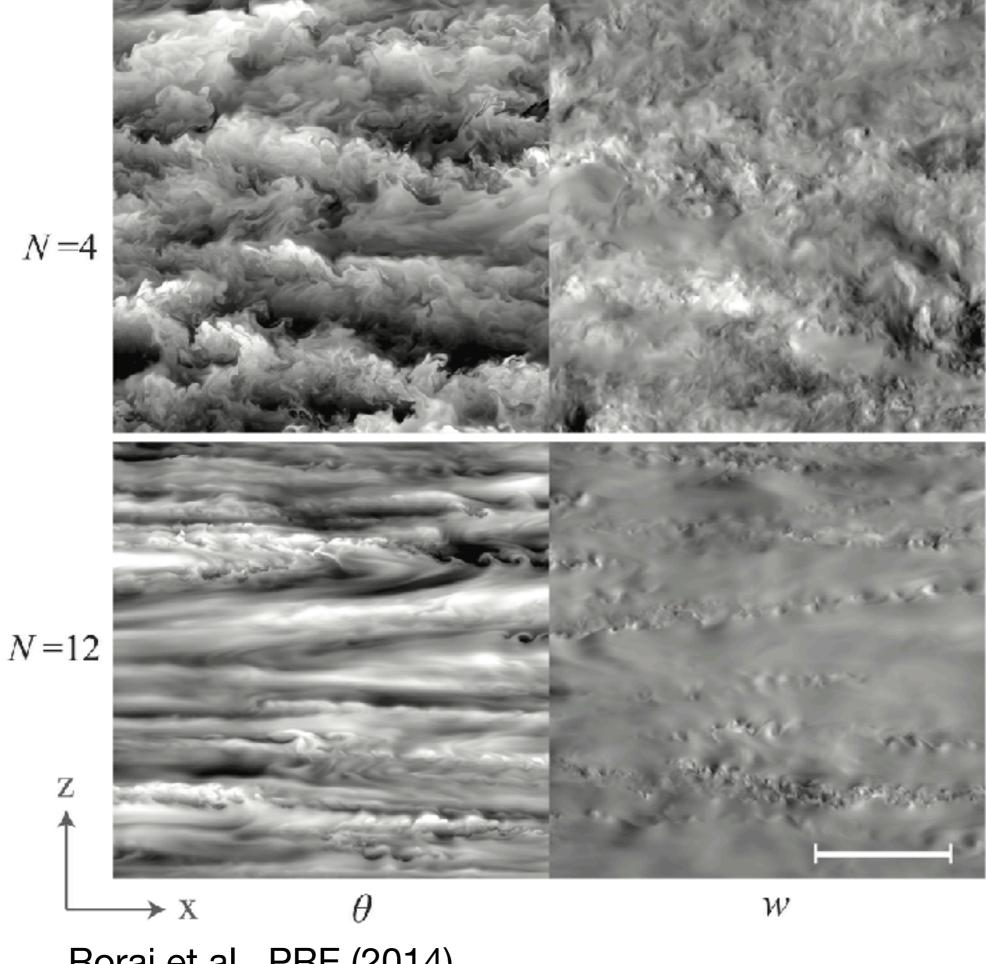
Stratified flows Planetary stomospheres are stratified. We have pravity f=-ppz and in a dry atmosphere (V. v = 0) Dt = 1 Dp - 2sexu-p2 + VD20

The Boussines p approximation Let's set 2=0 for the moment. We have hydrostatic balance (por the mean pressure) dp = - pp and if the fluid elements are adiabatic with $\Gamma_a = 2 = 9.8 K$ livex profiles

In the Boussinesq approximation we neplect variations in p except for the buoyancy 6. (30 + a. Da) = - 2665 - A26



Rorai et al., PRE (2014)

Internal provity waves

Let's assume we have a fluid in hydrostatic balance at rest. We apply a small perturbation. Linearizing (and removing the deltas):

Taking the curl of (1)

$$\rho_0 \frac{\partial \omega}{\partial t} = -\rho \nabla x \left(\rho_2^2 \right) = -\rho \nabla \rho x_2^2$$

Taking 3/2t $\frac{\partial^2 \omega}{\partial t^2} = -\frac{\partial}{\partial t} = -\frac{\partial}{\partial t} \times \frac{\partial}{\partial t} = -\frac{\partial}{\partial t} \times$ Taking snother curl and using $\Delta \times \bar{m} = -\Delta_s \bar{\Omega}$ $\Delta \times (\Delta M \times 5) = \Delta (3M) - \Delta_s M 5$ $\Rightarrow \left| \int_{0}^{0} \frac{3+z}{9\zeta} \Delta_{s}^{M} - \int_{0}^{1} \frac{35}{9b} \left(\Delta_{5} \frac{35}{9} \right) M \right|$ (0= 15 stations y solutions (2 =0) This looks apain have $\nabla^2 - \frac{\partial^2}{\partial z^2} = \nabla_1^2 = 0$ Solutions are independent of x and y (blocking!).

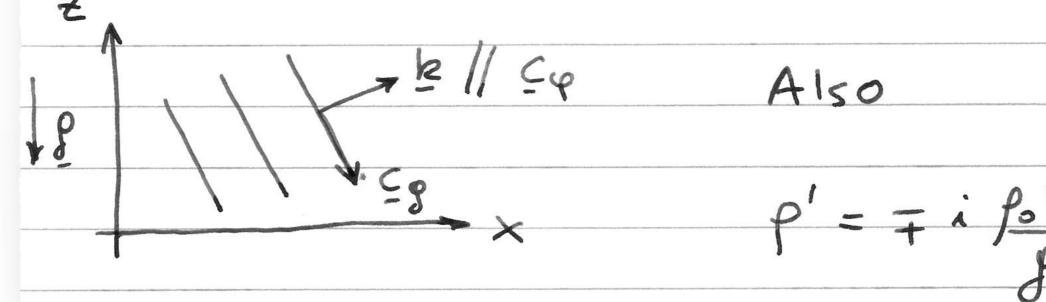
Taking
$$W = W_0 e^{i(k \cdot x - \sigma t)}$$

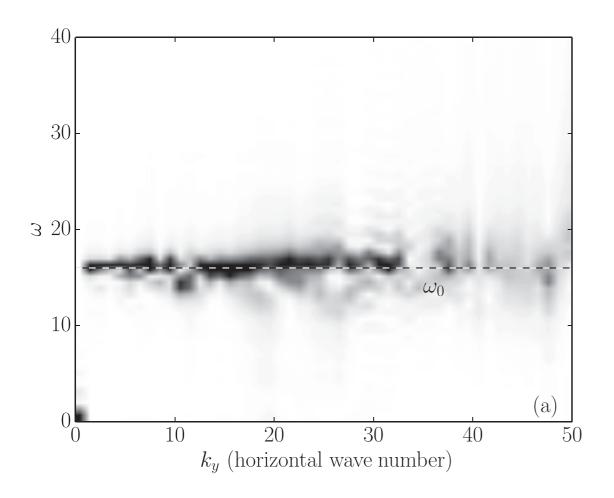
$$\Rightarrow \sigma^2 k^2 = \rho \frac{\partial \bar{\rho}}{\rho_0 \partial z} \left(k^2 - k_2^2\right)$$

$$\Rightarrow \rho \frac{\partial \bar{\rho}}{\partial z} \left(k^2 - k_2^2$$

Tr N red $\left(\frac{\partial \bar{\rho}}{\partial z} < 0\right)$ we have waves

But if $\frac{\partial \bar{\rho}}{\partial z} > 0$ instability (convection)





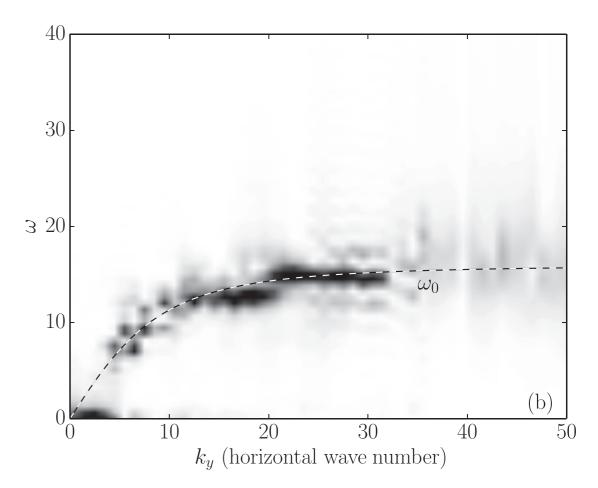
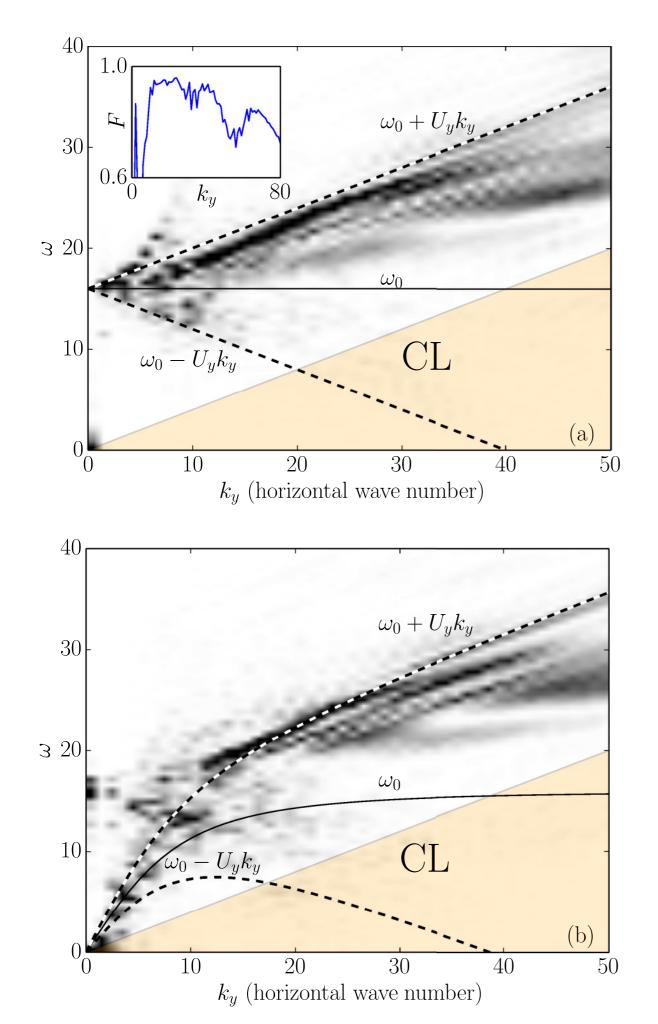
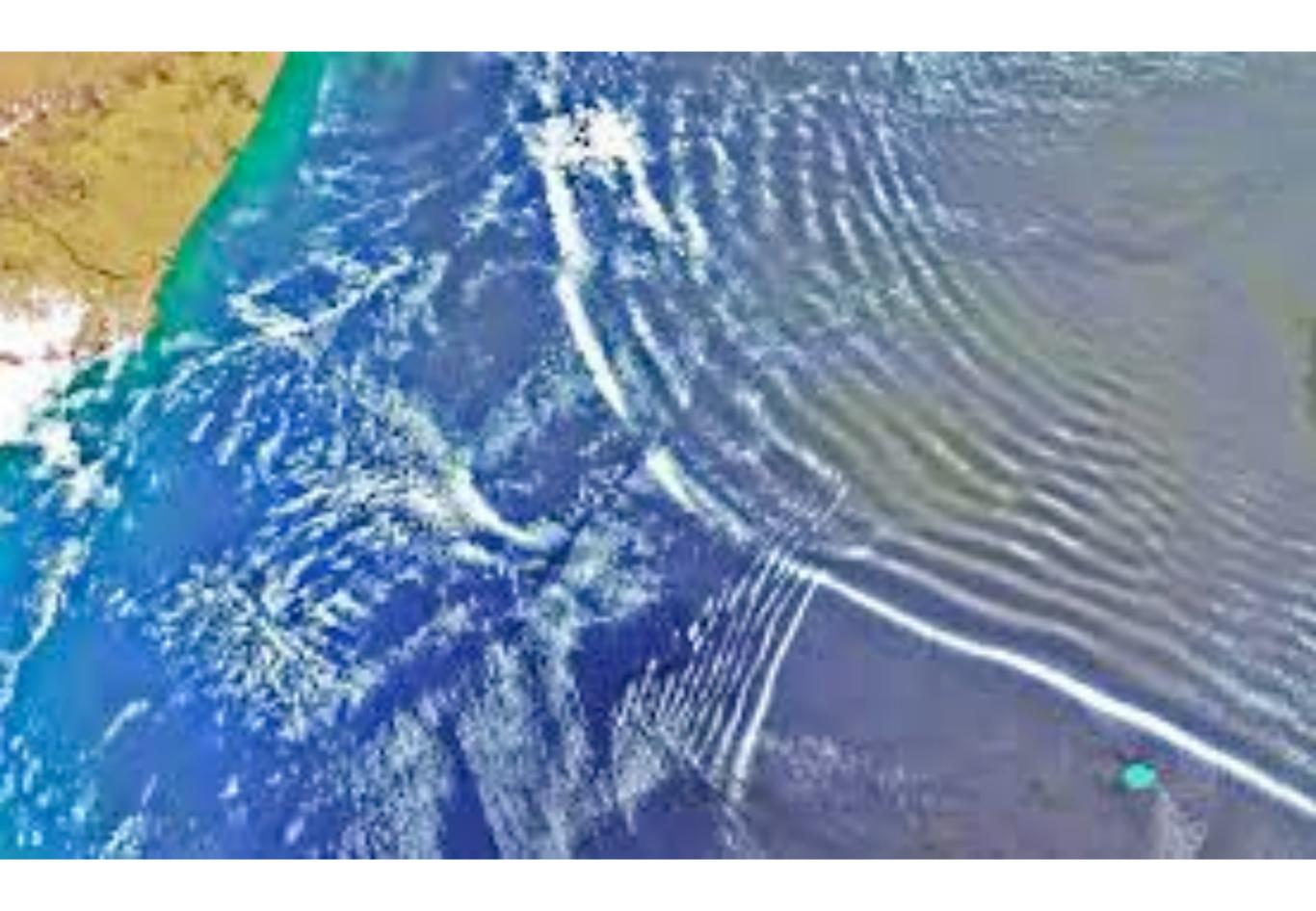


FIG. 8. Space- and time-resolved spectrum of the potential energy $E_{\theta}(k_x = 0, k_y, k_z, \omega)$ [normalized by $E_{\theta}(\mathbf{k})$] for two values of k_z : (a) $k_z = 0$ and (b) $k_z = 10$. There is no mechanical forcing in this simulation but a randomly generated, isotropic, and constantin-time external source of temperature fluctuations. The flow is then dominated by gravity waves, with an almost negligible large-scale horizontal flow. Note the absence of CL absorption and the negligible Doppler shift; most of the energy is concentrated along the dispersion relation for the waves.



Clark Di Leoni & Mininni, PRE (2015)



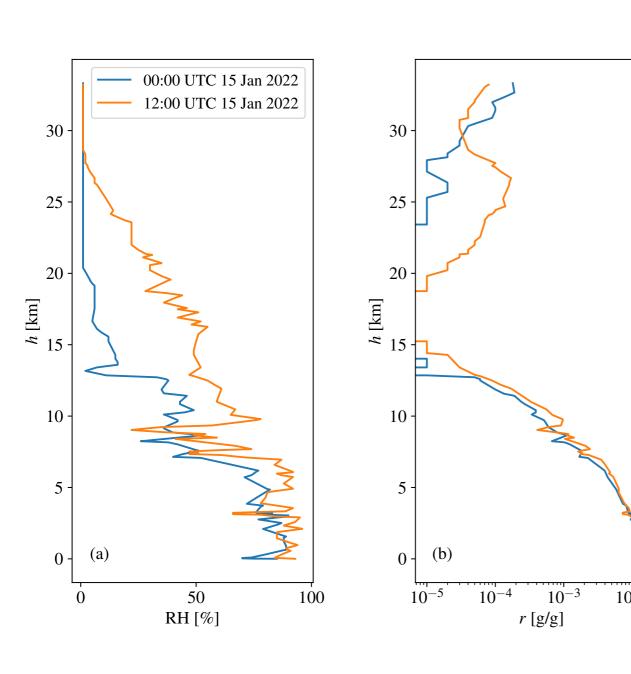
Froude number

72king \(\frac{2}{2} = \sqrt{\frac{2}{2}} \rightarrow \\ \frac{2}{2} \rightarrow \\ \frac{2} \rightarrow \\ \frac{2}{2} \rightarrow \\ \frac{2}{2} \rightar

 $\frac{3t}{92} + \Omega \cdot \Delta \hat{S} = NM + K\Delta_0$ $\frac{3t}{90} + \Omega \cdot \Delta \hat{O} = -\frac{b^0}{1}\Delta b - N\hat{S} \frac{5}{5} + \Lambda \Delta_0^{-1}$

Taking Ju. Tol U2.1 U-Fr INSI LNU LN

The effect of moisture is often neglected in turbulence studies:



Marsico, Smith & Stechmann (2019):

We now need an unsaturated and a saturated phase, plus a parameterization for the phase transition:

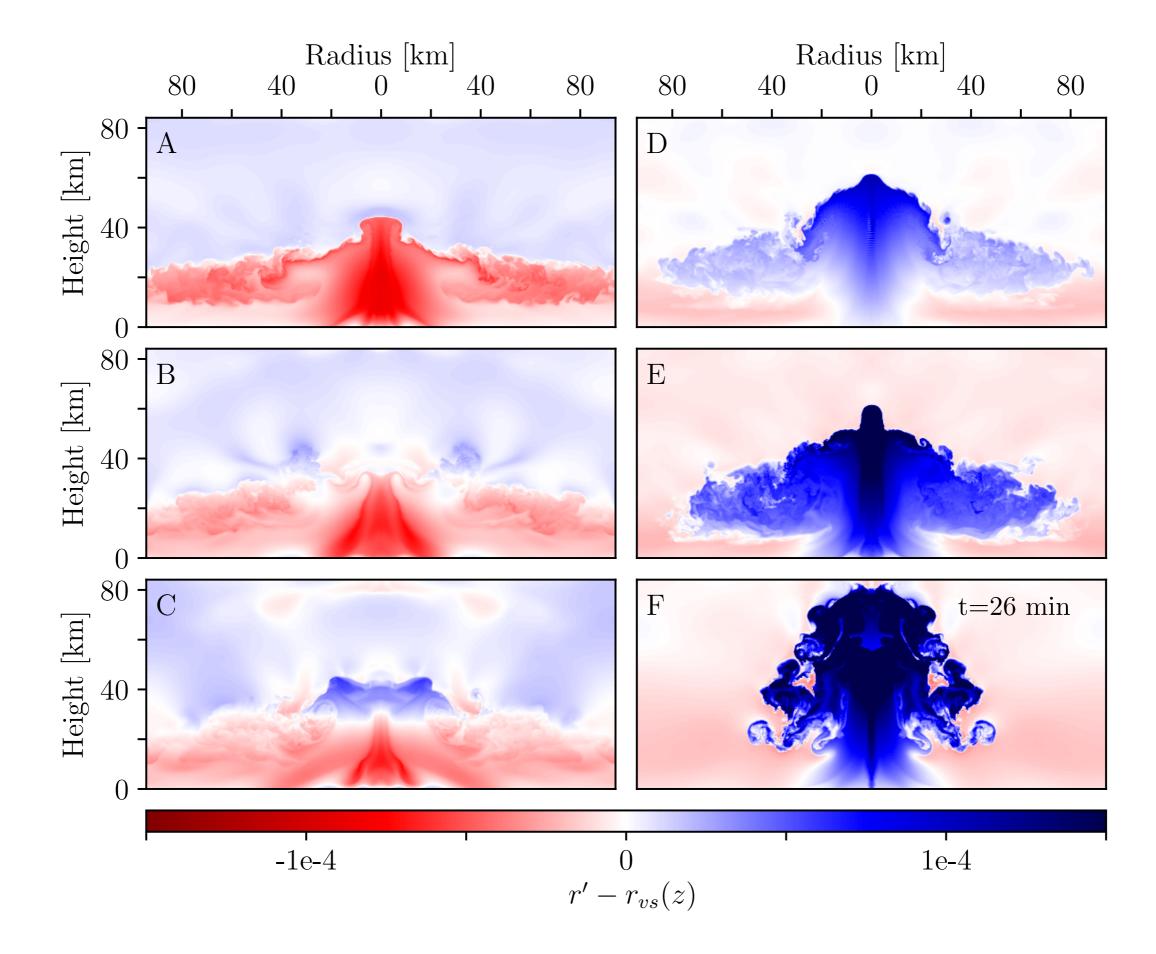
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla (p/\rho_0) + (b_u \Theta_u + b_s \Theta_s) \hat{\mathbf{z}} + \nu \nabla^2 \mathbf{u},$$

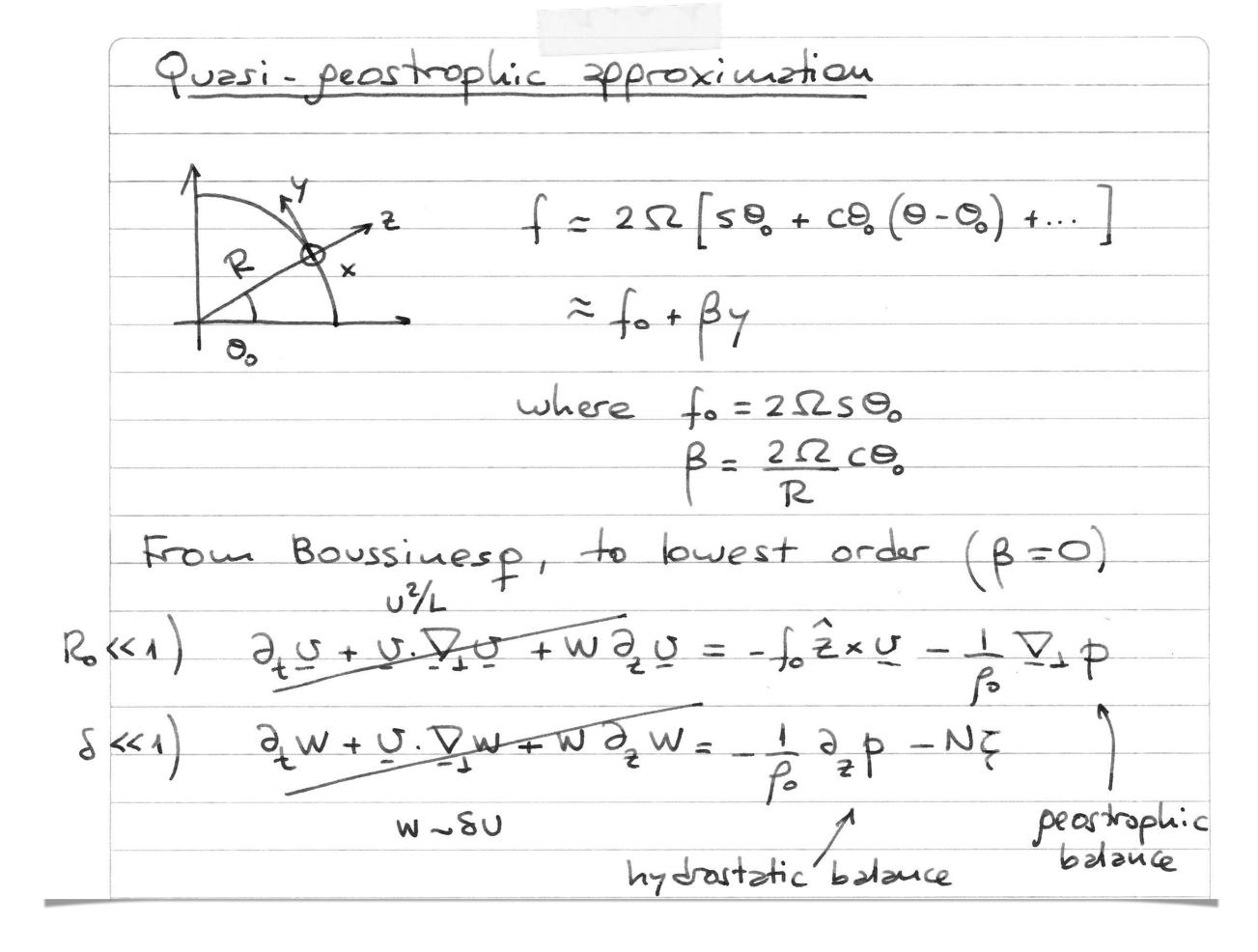
$$\frac{\partial b_u}{\partial t} + \mathbf{u} \cdot \nabla b_u = -N_u^2 w + \kappa \nabla^2 b_u + s_u,$$

$$\frac{\partial b_s}{\partial t} + \mathbf{u} \cdot \nabla b_s = -N_s^2 w + \kappa \nabla^2 b_s + s_s,$$

$$b_u = g \left[\frac{\theta'_e}{\theta_0} + \left(R^* - \frac{L}{c_p \theta_0} \right) r' \right],$$

$$b_s = g \left[\frac{\theta'_e}{\theta_0} + \left(R^* - \frac{L}{c_p \theta_0} + 1 \right) r_{vs}(z) - r' \right].$$





from peostrophic bases:

$$-\int_{0}u = \frac{1}{\rho_{0}}\frac{\partial p}{\partial y} \qquad f_{0}v = \frac{1}{\rho_{0}}\frac{\partial p}{\partial x}$$
Taking $y = \frac{1}{\rho_{0}}\frac{\partial p}{\partial y} = \frac{1}{\rho_{0}}\frac{\partial p}{\partial x}$

$$= \int_{0}^{\infty} \int_{$$

Let's po to the next order in an expansion in some small parameter:

$$X = LX'$$

$$Z = HZ'$$

$$Z = HZ'$$

$$Z = \frac{D_1}{D}$$

$$W = \delta U W'$$

$$W = \delta U W'$$

$$f_0 = \frac{U}{LR_0} f_0 \qquad \beta = \frac{U}{L^2} \beta'$$

To lowest order pressure is belowed by Coriolis in L:

1 \(\tau_1 \) \(\tau_2 \) \(\tau_1 \) \(\tau_2 \)

And in Z:

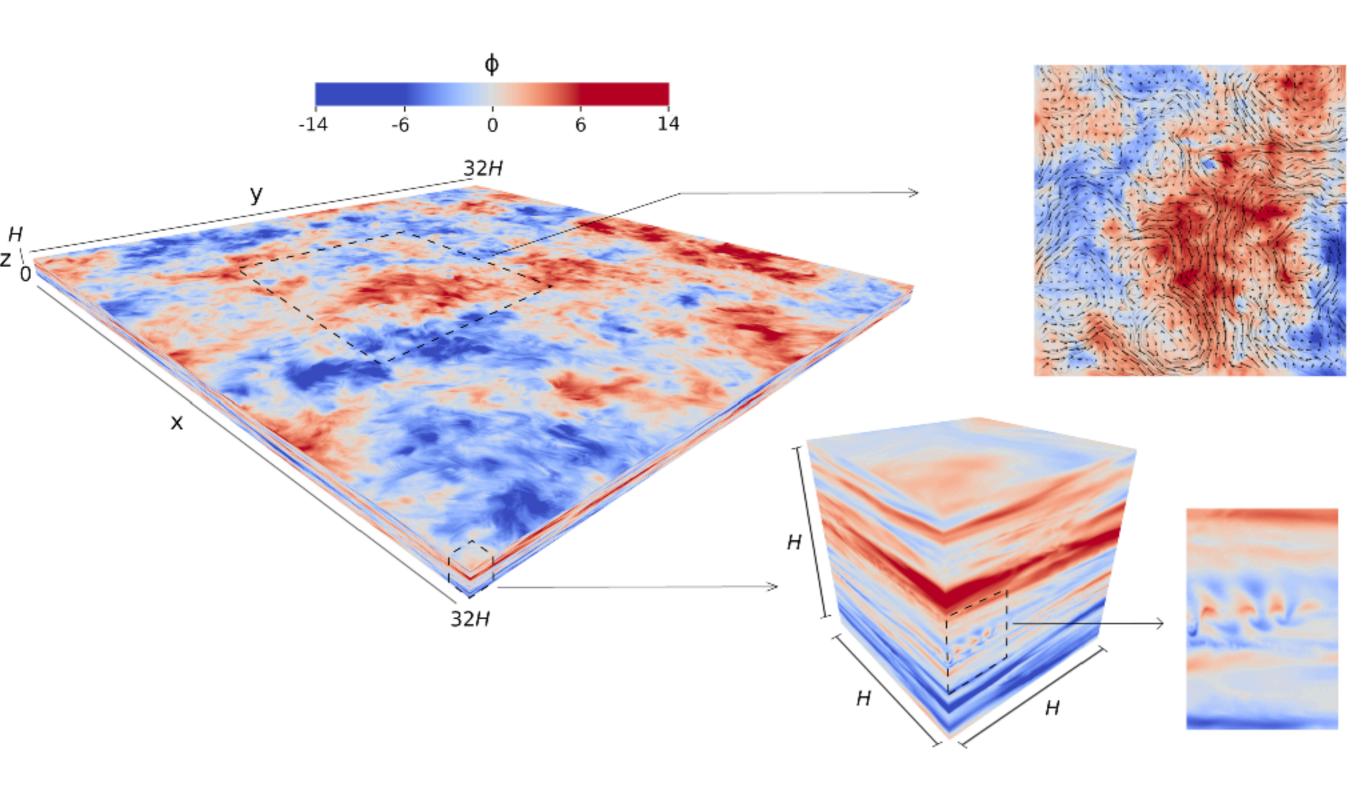
In Boussinesp:

\[
\frac{1}{2} \left(\frac{1}{2}, \frac{1}{2}' + \frac{1}{2}' \frac{1}' \frac{1}{2}' \frac{1}{2}' \frac{1}{2}' \frac{1}{2}' \frac{1}{2}' \frac{1}

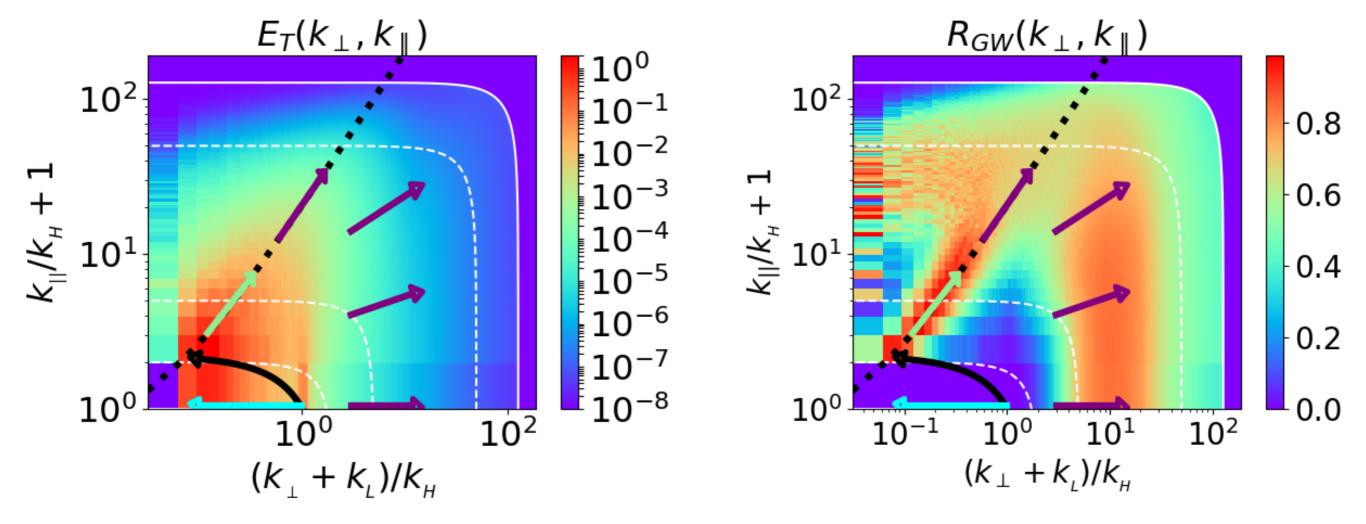
We now expand

To first order

We can recover ecs. with units by removing the primes. Taking the curl of the first of ep. and using $\nabla x up = \nabla_{\perp}^{2} \Psi^{2}$ The ep. cau be written as Dog = fodwil with = fo+By+Vi4 And using W. = Do (fo 24) 2 + 22 (fo 24) => D99=0 Q6 potential vorticity



Alexakis et al. (2024)



A diversion: The Lorenz attractor When the flow is unstable some modes prow exponentially until non-linear saturation. Let's assume this set up: 2 = H rolls Hot source

In the 2D case we can write $u = -\frac{\partial \mathcal{L}}{\partial z}$, $w = \frac{\partial \mathcal{L}}{\partial x}$

$$\psi = \frac{(1+\partial^2) k \sqrt{2}}{a} \times \sin \left(\pi \partial \xi \right) \sin \left(\pi \xi \right)$$

$$\psi = \frac{R_c \Delta T}{\pi R_o} \left[\sqrt{2} y \cos \left(\pi \partial \xi \right) \sin \left(\pi \xi \right) - Z \sin \left(2\pi \xi \right) \right]$$
with
$$\psi = \frac{\rho}{\rho_o} \left(\frac{\partial \rho}{\partial \xi} \right)^{-1} \rho$$
thermal exp. coefficient

Z= TT2 (1+22) kt/H2
This is a Galerkin truncation.

t thermal diffusivity

Replacing in the Bossings equations

$$\dot{X} = -\sigma X + \sigma Y$$

$$\dot{Y} = -XZ + \Gamma X - Y$$

$$\dot{Z} = XY - 6Z$$

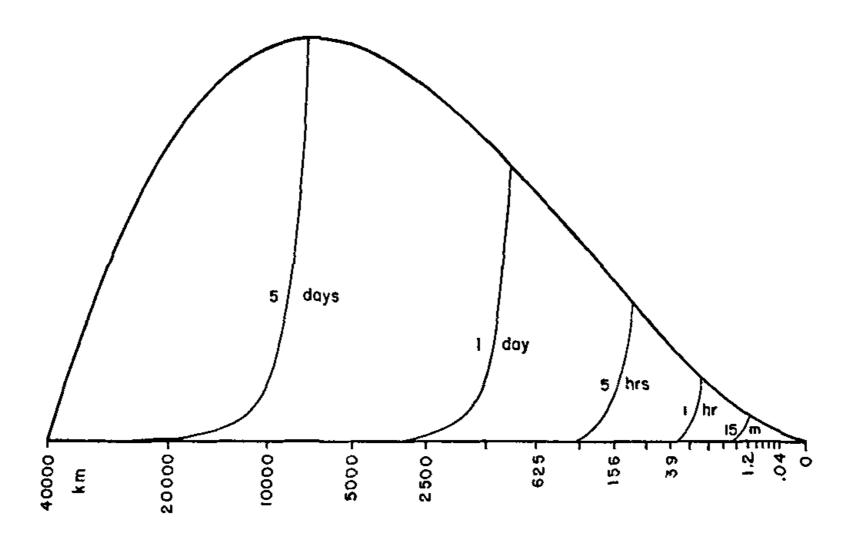


Fig. 2. Basic energy spectrum (heavy curve), and error-energy spectra (thin curves) at 15 minutes, 1 hour, 5 hours, 1 day, and 5 days, as interpolated from numerical solution in Experiment A. Thin curves coincide with heavy curve, to the right of their intersections with heavy curve. Horizontal coordinate is fourth root of wave length, labeled according to wave length. Resolution intervals are separated by vertical marks at base of diagram. Vertical coordinate is energy per unit logarithm of wave length, divided by fourth root of wave length. Areas are proportional to energy.

Lorenz (1969): Not from the strange attractor but from turbulence.