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in the flows, in Fig. 7 we present vertical slices (at constant
x = π ) of the potential temperature and horizontal velocity
fields for the two simulations. Although the simulations have
the same Fr and Re, the flows significantly differ. On the
one hand, there are smaller-scale structures and overturning in
both fields for the Taylor-Green forced simulation (this further
inhibits the creation of layers that can act as CL). On the other
hand, the simulation with three-dimensional forcing shows a
more dominant large-scale horizontal flow and smaller-scale
(although smoother) fluctuations in the temperature. This is
consistent with the fact that when forcing isotropically there
is more energy in the waves, as seen in Fig. 6. Another way
to quantify how much energy is in the VSHW is to compare
the ratio of the energy in the modes with ω = 0 (i.e., in the
modes with k⊥ = 0) to the total energy. For Fr = 0.02, the
Taylor-Green simulation has ≈0.009% of its total energy in
those modes, while the isotropically forced one has ≈0.03%,
indicating that the simulation with three-dimensional forcing
has stronger VSHW. Note, however, that both simulations have
a broad energy spectrum, indicating that turbulence in both
flows may be of different nature, with the case with more
energy in wave motions being smoother and possibly closer to
a wave turbulence regime.

The comparison between the two different forcing functions
further indicates that stratified turbulent flows may display
different behavior depending on whether the mechanism used
to excite the turbulence allows or prevents the development of
large-scale vertically sheared horizontal winds. Interestingly,
the case studied here that injects more energy directly into
the waves is also the case in which horizontal winds and CL
absorption more clearly develop, two features that are not
considered in wave turbulence theories.

V. CONCLUSIONS

In a turbulent flow, waves and individual absorption events
cannot be easily identified. As a result, previous numerical
and observational studies of Doppler shift and CL absorption
focused on analyzing single wave packets traveling through
a background flow. Our analysis, based on computation of
a four-dimensional spectrum with high temporal and spatial
resolution, allowed us to study these phenomena in turbulent
flows and to identify direct evidence of their occurrence.

With these tools we showed that Doppler shift and CL
absorption occur naturally in a stratified disordered flow, as a
result of the interaction of the waves with the horizontal winds.
This indicates CL absorption can be one of the mechanisms
behind the formation of large-scale structures in stratified flows
often observed in simulations but whose origin is unclear
[30–32]. Moreover, although Doppler shift is observed in all
forcing functions considered (except for the case discussed
in the Appendix), development of CL absorption requires
the external forcing not to disrupt the development of mean
horizontal winds. Theories of stratified wave turbulence should
take these effects into account.

The mechanism, and the tools presented here, can be also
relevant in quasigeostrophic turbulence [36] and in plasma
turbulence [37,38], where zonal flows are also known to
develop. Moreover, CLs are known to be relevant in Rossby
wave turbulence (see, e.g., Refs. [14–16]). Depending on the

flow in which CLs develop, the equations that define the layer
differ. As an example, while the CL in a stratified flow is
given by the Taylor-Goldstein equation in Eq. (7), in the case
of Rossby waves the CL follows from the Rayleigh or the
Orr-Sommerfeld equation (see, e.g., Ref. [16] for a discussion
of CL absorption in the context of Rossby waves and for a
discussion of the shortcomings of applying wave turbulence
theory in this context). In spite of these differences, the analysis
presented here based on the four-dimensional spectrum should
allow detection of CL absorption also in this case.

Finally, we must point out that all the results presented here
were obtained with forcing functions that were kept constant in
time. The differences between the forcing schemes considered
indicate that results are sensitive to the way turbulence is

FIG. 8. Space- and time-resolved spectrum of the potential
energy Eθ (kx = 0,ky,kz,ω) [normalized by Eθ (k)] for two values
of kz: (a) kz = 0 and (b) kz = 10. There is no mechanical forcing
in this simulation but a randomly generated, isotropic, and constant-
in-time external source of temperature fluctuations. The flow is then
dominated by gravity waves, with an almost negligible large-scale
horizontal flow. Note the absence of CL absorption and the negligible
Doppler shift; most of the energy is concentrated along the dispersion
relation for the waves.
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This indicates CL absorption can be one of the mechanisms
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often observed in simulations but whose origin is unclear
[30–32]. Moreover, although Doppler shift is observed in all
forcing functions considered (except for the case discussed
in the Appendix), development of CL absorption requires
the external forcing not to disrupt the development of mean
horizontal winds. Theories of stratified wave turbulence should
take these effects into account.

The mechanism, and the tools presented here, can be also
relevant in quasigeostrophic turbulence [36] and in plasma
turbulence [37,38], where zonal flows are also known to
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FIG. 2. Space-resolved axisymmetric energy spectrum e(k⊥,k∥)
for two runs with (a) Fr ≈ 0.02 and (b) Fr ≈ 0.01. Note the spectral
anisotropy resulting from stratification. The solid line indicates the
modes with wave period equal to the eddy turnover time, τω = τNL.
In (b) a ridge is formed close to this curve, indicating energy is
transferred towards modes with lower k⊥ but the transfer is halted
when τω ≈ τNL. Modes with τω < τNL (i.e., modes below the solid
line) are often called wave modes, as these modes have the wave
period as the fastest time scale. However, a proper characterization
of waves requires space- and time-resolved spectra.

B. Spatiotemporal analysis

Precise identification of the waves, and of their role in the
dynamics, requires both space and time information. Figure 3
shows different cuts of the frequency and wave-number
spectrum Eθ (kx,ky,kz,ω) for kx = 0 and for either kz = 0 or

FIG. 3. (Color online) Space- and time-resolved spectrum of the
potential energy Eθ (kx = 0,ky,kz,ω) (normalized by E(k), with 0
corresponding to white and 1 corresponding to black), for Fr = 0.01
and for two different values of kz: (a) kz = 0 and (b) kz = 10. The
fundamental dispersion relation ω0(k) from Eq. (3) is given by the thin
solid curve, along with two Doppler-shifted branches with Uy = ±0.4
(dashed curves). Energy is mostly concentrated in the fan defined by
the two shifted branches, although not uniformly distributed. Waves
that travel with the flow (upper half fan) concentrate most of the
power. The area shaded with light gray (transparent orange in the
online version) corresponds to ω < Uyky with Uy = 0.4; note there
is almost no power in this region. The defect of energy in all modes in
this area indicates these waves are absorbed by critical layers (CL),
with their energy being transferred to the flow. Inset: Fraction of the
energy F that is contained within the two Doppler-shifted branches
as a function of the wave number. In the inertial range, ≈80% of the
energy corresponds to Doppler-shifted waves.

kz = 10 in the simulation with the strongest stratification and
three-dimensional forcing. As internal gravity waves couple
vertical motions with temperature fluctuations, we consider
the spectrum of potential energy Eθ to isolate the waves
more easily. In Fig. 3 there is no significant accumulation of
energy in the modes that satisfy the dispersion relation given
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The effect of moisture is often neglected in turbulence 
studies:
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Fig. 2 (a) Nearest vertical profile of relative humidity (RH, in %) from radio sounding observations
at Pago Pago (American Samoa) at 0:00 UTC, and at 12:00 UTC on 15 Jan 2022 (from https:
//weather.uwyo.edu/upperair/sounding.shtml) (b) Same for the total water mixing ratio r.

particles. The flow is incompressible everywhere (zero Mach number), the background
equivalent potential temperature profile is linear with height (changes in the slope near
the tropopause are neglected), and the forces acting on the particles are linear Stokes
drag and gravity, an approximation that is valid for small heavy particles (Falkinho!
et al. 2020). The water saturation of the atmosphere and of the volcanic plume can
be varied independently (see table 1). The main aim of our model is to capture moist
turbulence, and its e!ect on the dynamics of particles in the umbrella cloud. As a
computational trade-o!, we consider a simplified description of the eruption using an
artificial source (note that we do not aim at reproducing the eruptive column dynam-
ics or the physics in the gas-thrust region) and simplified boundary conditions (see
Methods). See Costa et al. (2016); Esposti Ongaro and Cerminara (2016a,b) for other
models of volcanic plumes that can properly capture these features, while relying in
general on turbulence modeling.

Six configurations of the atmosphere were considered, with a fixed buoyancy fre-
quency of the unsaturated (vapor) phase, Nu and decreasing buoyancy frequency of
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is a source of equivalent potential temperature anomalies, with sω a source of potential
temperature anomalies and sv a source of water vapor anomalies, and

sr = sv + sl, (10)

is the source of total water mixing ratio anomalies, with sl an anomalous liquid water
source. Finally, in Eq. (6), b is the buoyancy anomaly defined as

b = g

(
ω
→

ω0
+ R

↑
r
→
v → r

→
l

)
, (11)

with R
↑ = Rv/R → 1 ↑ 0.61 where Rv is the gas constant of vapor.

As a simple condensation parameterization we consider r
→
v = min{r

→
, rvs(z)},

r
→
l = max{0, r→ → rvs(z)}, where rvs(z) is the excess in the saturation mixing ratio

allowed for the anomalies (Marsico et al. 2019). Under this approximation we can
define buoyancy anomalies for the unsaturated (vapor) and saturated (liquid) phases,
bu and bs, respectively, as

bu = g

[
ω
→
e

ω0
+

(
R

↑ → L

cpω0

)
r
→
]

, (12)

bs = g

[
ω
→
e

ω0
+

(
R

↑ → L

cpω0
+ 1

)
rvs(z) → r

→
]

. (13)

We can then rewrite Eqs. (6)-(8), adding dissipation and di!usion, as

εu

εt
+ u · →u = →→(p/ϑ0) + (bu”u + bs”s)ẑ + ϖ↓2u, (14)

εbu

εt
+ u · →bu = →N

2

uw + ϱ↓2
bu + su, (15)

εbs

εt
+ u · →bs = →N

2

s w + ϱ↓2
bs + ss, (16)

where su and ss are the unsaturated and saturated buoyancy sources, defined below.
Dissipation in Eq. (14) for the velocity field takes the usual form used in the Navier-
Stokes equation. Di!usion of the buoyancy anomalies in Eqs. (15) and (16) results from
thermal di!usion and from mass di!usion of anomalies in the water density, follow-
ing the usual expression resulting from Fick’s law. Strictly speaking, the temperature
and each water phase have di!erent di!usion coe#cients, resulting in di!erent di!u-
sivities for bu and bs. However, for simplicity here we assume that the di!usivity of
the unsaturated and saturated phases are the same. The function ”u = ”(bu → bs)
in Eq. (14) is the Heaviside function, and ”s = 1 → ”u. Finally, the square of the
buoyancy frequencies of each phase are defined as

N
2

u = g
d

dz

[
ωe

ω0
+

(
R

↑ → L

cpω0

)
r

]
, (17)
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Marsico, Smith & Stechmann (2019): 
 
We now need an unsaturated and a saturated 
phase, plus a parameterization for the phase 
transition:
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Fig. 3 Vertical cuts of the anomalous water mixing ratio minus the excess saturation value, r→ →
rvs(z), in g/g. Red regions correspond to dry air or vapor, and blue regions to saturated parcels
(liquid water). Simulations A, B, and C correspond to a dry source in an increasingly warmer (or
more saturated) atmosphere, from A to C. Simulations D and E have increasingly more water in the
source, in a fixed, less saturated atmosphere. Simulation F has a moist source in a more saturated
atmosphere. All cuts correspond to time t = 43 min except for F (t = 26 min).

water vapor. When r
→ → rvs > 0, the excess amount in the water mixing ratio, r

→ → rvs,
is in the form of liquid water. Comparing simulations A, B, and C, all with a dry
source and with an increasingly more saturated atmosphere, note that as moisture
in the atmosphere increases, three trends can be identified: first, as the atmospheric
relative humidity increases, vapor in the plume condenses into liquid at lower heights.
Second, the first “rolling” of the flow, generating vorticity, seems to take place at
a smaller radius. And third, the top of the umbrella cloud becomes taller. Similar
trends are observed when, for a fixed atmospheric state, the amount of water in the
source is changed (runs A, D, and E). Finally, the case with a moist source in a
saturated atmosphere (F) combines these e!ects, resulting in a very tall plume with
little horizontal expansion and strong turbulence at small radii (this simulation had
to be stopped at an earlier time as the plume reached the top of the domain). The
overall behavior is compatible with previous studies showing that steam can increase

8

















Alexakis et al. (2024)



FIG. 3. Two-dimensional energy spectra in log-log scale. White dashed lines indicate isotropic

contours (i.e., modes with constant wavenumber k). The solid white line indicates the maximum

resolved wave numbers. (Left) Total energy spectrum. (Right) Gravity wave energy spectrum ratio.

The black dotted lines marks 2⌦kk = Nk? where inertial wave frequency matches gravity wave

frequency. The arrows indicate the direction of the flux of energy.
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PREDICTABILITY OR FLOW POSSESSING MANY SCALES O F  MOTION 303 

Fig. 2. Basic energy spectrum (heavy curve), and error-energy spectra (thin curves) a t  15 minutes, 1 
hour, 5 hours, 1 day, and 5 days, as interpolated from numerical solution in Experiment A. Thin curves 
coincide with heavy curve, to  the right of their intersections with heavy curve. Horizontal coordinate is 
fourth root of wave length, labeled according to wave length. Resolution intervals are separated by ver- 
tical marks a t  base of diagram. Vertical coordinate is energy per unit logarithm of wave length, divided 

by fourth root of wave length. Areas are proportional to  energy. 

for the positions of successively larger scales 
to attain quarter-wave-length uncertainties. 

In  Run C2, the range of predictability is 
about twice that in the first run, for all scales 
except the largest. Ultimately, however, there 
is for each scale a point where cutting the initial 
error in half fails to double the range of predict- 
ability, and, indeed, fails to increase the range 
by more than a few minutes. Likewise, in each 

run there is a point where doubling the wave 
length fails to double the range. It is at this 
point that the spread of errors from smaller 
to larger scales becomes appreciable. Run C8 is 
hardly distinguishable from C7 except in the 
smallest scales, and it appears that further 
reduction of the initial error would not greatly 
lengthen the range of predictability of any 
scale. 

Table 4. Range of predictability tk for scale k as determined in Runs C l ,  ..., C8 of Experiment C 

k tk: c1 c 2  c 3  c 4  c 5  C6 c7 cs 

21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

0.6 sec 
1.2 
2.4 
4.8 
9 

19 
39 

1.3 min 
2.6 
5.2 

10.6 
21.5 
42.6 

1.5 hr 
3.0 
6.1 

12.8 
1.1 day 
2.5 
5.7 

10.7 

1.6 sec 
2.6 
5.0 

10 
21 
43 

1.5 min 
2.9 
5.8 

11.7 
23.3 
46.7 

1.5 hr 
3.1 
6.0 

11.9 
23.8 
2.0 day 
4.0 
8.0 

14.3 

2.7 sec 
5.0 

10 
21 
43 

1.5 min 
2.9 
5.6 

11.4 
22.6 
44.0 

1.4 hr 
2.8 
5.2 
9.6 

17.8 
1.4 day 
2.6 
4.8 
9.2 

15.8 

5.5 s0c 
10 
21 
43 

1.4 min 
2.9 
5.6 

10.9 
20.8 
39.6 

1.2 hr 
2.2 
4.1 
7.2 

12.7 
22.3 

1.6 day 
2.9 
5.3 
9.8 

16.4 

11 sec 
21 
41 

1.3 min 
2.6 
5.1 
9.7 

17.8 
32.3 
57.5 

1.7 hr 
2.9 
5.0 
8.5 

14.4 
1.0 day 
1.8 
3.1 
5.5 

10.0 
16.7 

23 s0c 
40 

1.2 min 
2.3 
4.3 
7.9 

14.0 
24.3 
41.3 

1.2 hr 
2.0 
3.3 
5.5 
9.1 

15.2 
1.1 day 
1.8 
3.1 
5.6 

10.1 
16.7 

53 sec 
1.1 min 
1.9 
3.4 
5.9 

10.2 
17.1 
28.2 
47.0 

1.3 hr 
2.2 
3.4 
5.6 
9.3 

15.5 
1.1 day 
1.8 
3.1 
5.6 

10.1 
16.7 

1.8 min 
2.0 
2.9 
4.4 
7.1 

11.6 
18.8 
30.6 
49.5 

1.3 hr 
2.2 
3.5 
5.7 
9.4 

15.6 
1.1 day 
1.8 
3.2 
5.6 

10.1 
16.7 

Tellus XXI (1969), 3 

Lorenz (1969): Not from the strange attractor but 
from turbulence.


