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PHASE TRANSITIONS AND FLUX-LOOP METASTABLE …

FIG. 2. (a–c) Visualizations of the parallel component of the vorticity for a split-cascade case, a flux loop
case, and a forward-cascade case, respectively. The direction of the rotation axis and the forcing length are
shown in (a). The three simulations have λ = 1 and Ro = 0.25, 0.50, and 0.71, respectively. (d–f) Total and
chirally decomposed fluxes, for the three regimes shown in the top row.

In Figs. 2(a)–(c) we show visualizations of the vorticity projection in the direction of the rotation
axis for three characteristic data sets representing the three different phases at late times, and in
the Supplemental Material we show movies comparing their time evolutions (see Appendix B and
Ref. [27]). In the split-cascade regime [Fig. 2(a)], the system forms many corotating columnar
vortices which eventually merge into one. In the forward-cascade regime [Fig. 2(c)], no large-scale
coherent vortical structures are formed, as expected. In the new flux-loop regime [Fig. 2(b)], the
columnar vortices form but do not merge and get quasistuck in a lattice-like structure that persists in
time (the movie in the Supplemental Material [27] shows this explicitly). Similar structures, deemed
“vortex crystals,” have been observed in systems like 2D point vortices [23,28], 2D turbulence
[29–31], Bose-Einstein condensates [32,33], and even Jupiter’s atmosphere [34]. In particular,
asymmetric states where the system resembles a crystal with defects, like what is shown in Fig. 2(b),
have been shown to be equilibria of corotating point vortex systems [23,28]. Note that in 2D
randomly forced turbulence there is a symmetry between positive and negative vorticity. As a result,
the kind of structures that we observe here are connected to the asymmetry between corotating and
counterrotating vortices introduced by rotation and 3D effects.

It is worth noting that the vortex crystal state is formed in the absence of any large-scale damping
term to suppress the inverse cascade. The stationarity of the energy spectrum then implies that
the total inverse energy flux at k < k f has to be zero. Nonetheless, the spectrum is far from the
Ek ∝ k2 shape predicted by a simple equilibrium distribution [35,36]. To resolve this puzzle we
show in Figs. 2(d)–(f) the total energy flux, "k = −i

∑
|k|!k

∑
p+q=k(û−k · ûp)(k · ûq), and its exact

decomposition in homochiral and heterochiral subcomponents, "k = "hom
k + "het

k , built in terms
of Fourier triads including modes with the same or opposite helicity signatures (see Appendix A
and Refs. [26,37] for a discussion about the importance of hetero- and homochiral properties for
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FIG. 3. Normalized wave vector and frequency spectrum E11(k, ω)/E11(k) for the run with " = 8. Darker regions indicate
larger energy density. The dashed curve indicates the dispersion relation for inertial waves. (Top left) Normalized E11(kx =
0, ky = 0, kz, ω). (Top right) Normalized E11(kx = 0, ky = 1, kz, ω). (Bottom left) Normalized E11(kx = 0, ky = 5, kz, ω).
(Bottom right) Normalized E11(kx = 0, ky = 10, kz, ω). Note from the maximum values in the color bars how the modes close
to the dispersion relation concentrate most of the energy in the first two cases (ky = 0 and ky = 1), while as ky is increased
energy becomes more spread.

It should also be noted that in Fig. 2 the energy does not accumulate near the modes with
τω = τNL, as it is expected in theories dealing with the concept of critical balance.24 In critical
balance, it is argued that in the case of strong turbulence, energy in the weak turbulence modes
cascades towards larger values of k⊥, while energy in modes with τω < τNL (which are outside the
domain of weak turbulence, and are, therefore, strong) cascade inversely towards smaller values
of k⊥.24, 37 This establishes a balance with τω = τNL; energy accumulates in the modes that satisfy
this balance and then cascades towards larger values of k along this curve. No such accumulation is
visible in Fig. 2, and as only modes with τω < τsw are forced, the energy in the domain τω > τNL

can only come from a transfer from the wave modes to the vortical modes in the direction opposite
to that needed to establish the balance.

B. Wave vector and frequency spectrum

Figure 3 shows the wave vector and frequency spectrum E11(k, ω)/E11(k) for different values
of k, where

E11(k) =
∫

E11(k,ω) dω. (18)

With this choice for the normalization, the frequencies that concentrate most of the energy for each
k are more clearly visible.

When kx = 0, ky = 0, and kz is varied, most of the energy is concentrated near ω = 2", especially
for kz < 10. For larger values of kz, the width of the band that concentrates most of the energy increases
(compare this with the regions in Fig. 2 corresponding to modes with τω(k) < τsw(k), and to modes
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