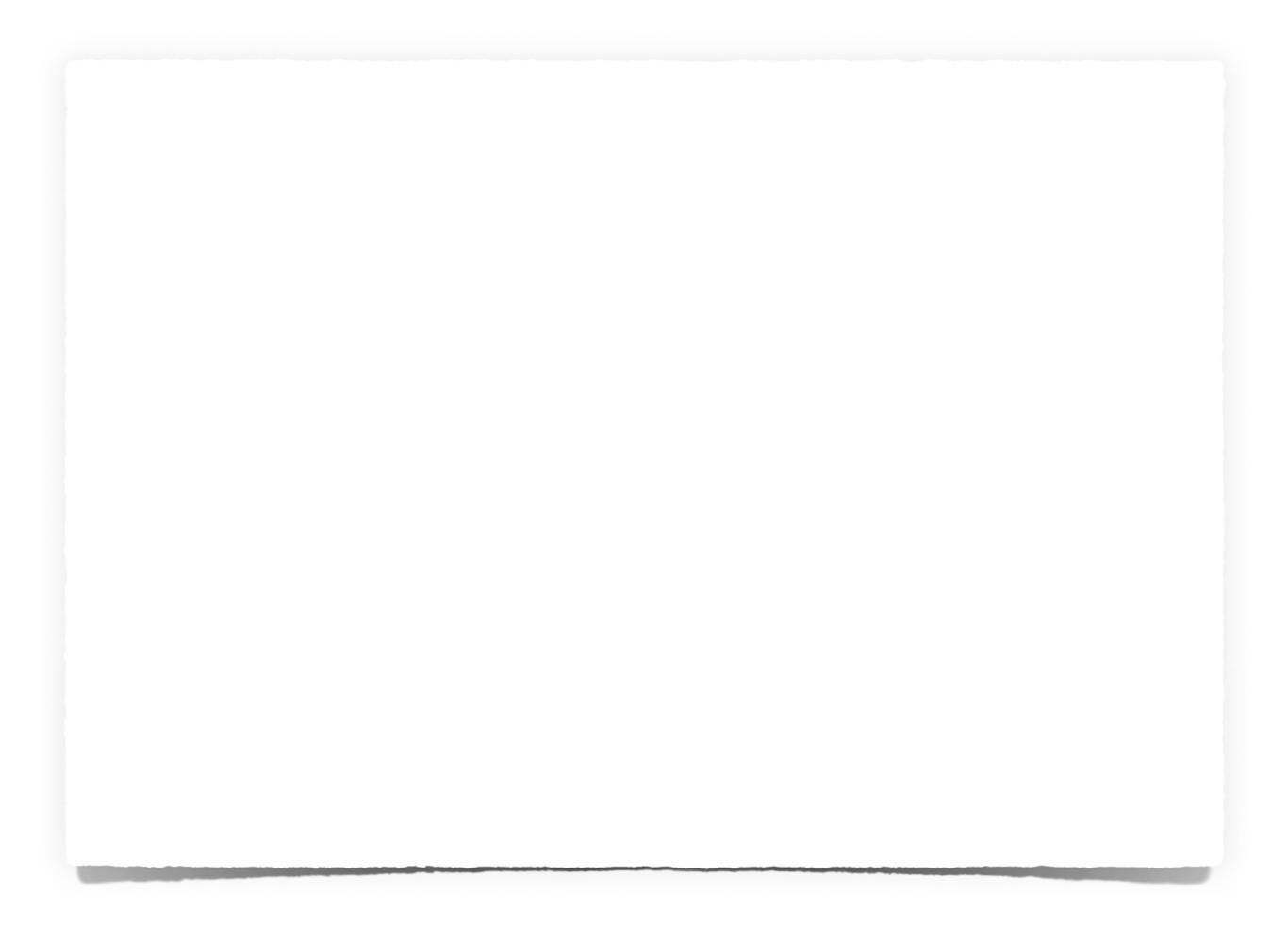
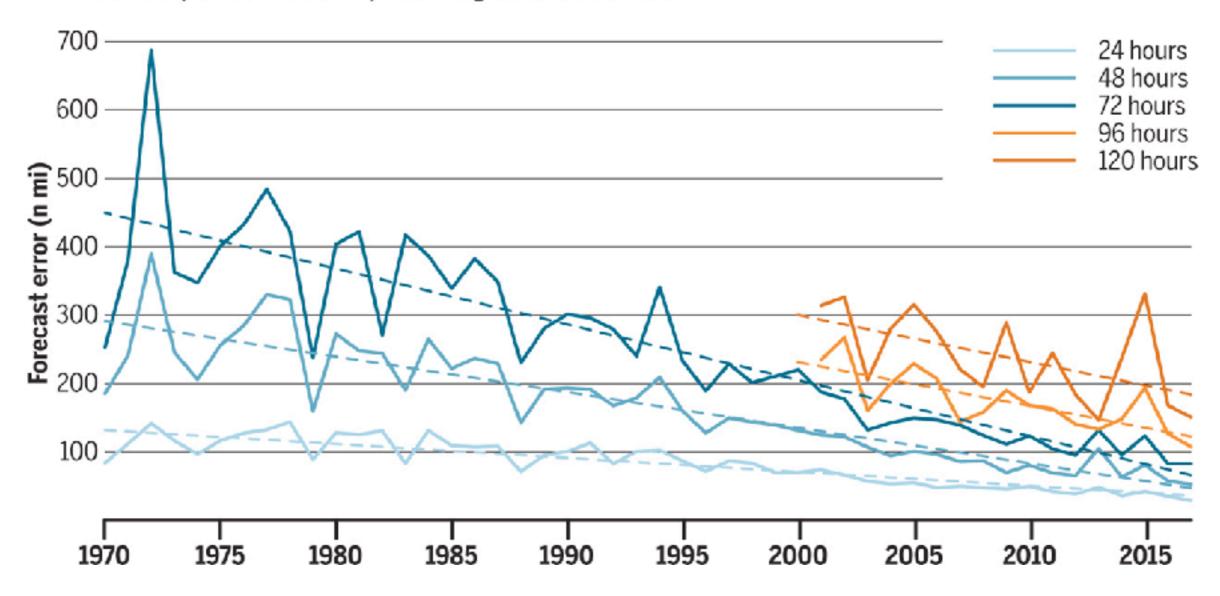
An introduction to geophysical fluid dynamics

Pablo Mininni (UBA & CONICET)



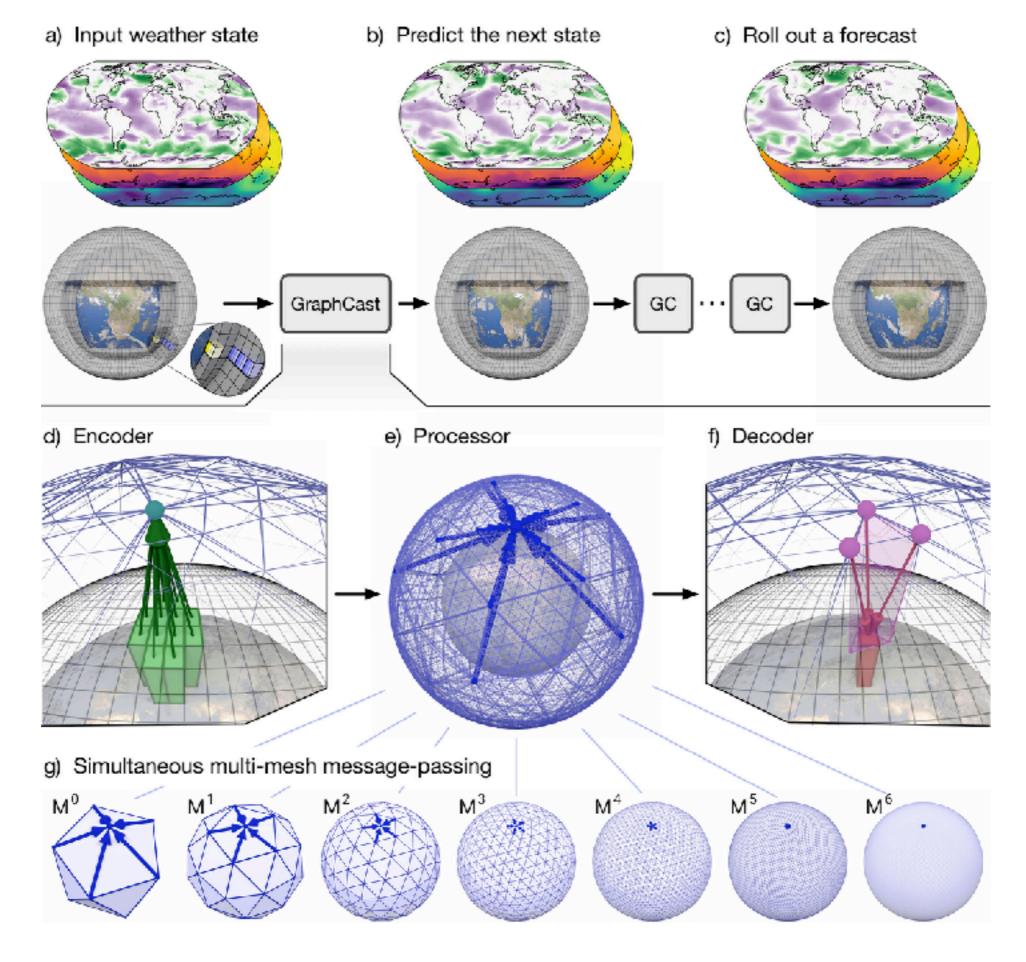
Advances in hurricane prediction

Data from the NOAA National Hurricane Center (NHC) (13) show that forecast errors for tropical storms and hurricanes in the Atlantic basin have fallen rapidly in recent decades. The graph shows the forecast error in nautical miles (1 n mi = 1.852 km) for a range of time intervals.



Alley et al., Science (2019)

Basic physical processes -> pormal
models
corecest simplification
14
NN? Models
vs. data 7
Or models + data
a conservation la us
Physics Forces.
Thysics forces.
Geometry and B.C.



Lam et al., Science (2023)

The fundamental equations

$$\frac{3f}{30} + 2 \cdot \Delta 0 = 2,$$

$$\frac{3f}{30} + \frac{3f}{30} + \frac{3f}{30}$$

Mass conservation

$$\frac{\partial \varphi}{\partial t} + \frac{\partial \varphi}{\partial t} = -\int \frac{\partial \varphi}{\partial t} dx = -\int \frac{\partial \varphi}{\partial t} dx$$

$$\frac{\partial \varphi}{\partial t} + \frac{\partial \varphi}{\partial t} - \frac{\partial \varphi}{\partial t} = 0$$

Then the conservation of mass is De + p \(\bar{D} \cdot \) \(\beta Example: Idex pas in the stmosphere P= PRT Atmospheric pressure = 105 Pa SP from meteorological phenomena = 103Pa Sound waves (60 dB) = 10 Pa

Conservation of momentum PDt = F pressure pradients Viscosity $P\left(\frac{\partial \sigma}{\partial t} + \sigma \cdot \nabla \sigma\right) = E$ protetion external forces Everpy D5 = 0 If we have sources (e.g., lateut heat) 35 + U.VS - S

If fluid elements are adiabatic ds=0=cpdT-NkdP

Potential temperature

for an incompressible flow (but p may not be constant)

$$\frac{1}{\Delta \times 90} = \frac{9f}{9m} = -\Delta \times (\Omega \cdot \Delta \Omega) + \Delta \times (\frac{b}{1} \Delta b)$$

$$\Delta \times (\overline{\alpha} \times \overline{m}) = -\overline{m} \times \overline{\Delta} \cdot \overline{\alpha} + (\overline{n} \cdot \overline{\Delta}) \overline{\alpha} - (\overline{\alpha} \cdot \overline{\Delta}) \overline{m}$$

If the flow is brotropic, $\rho = \rho(p) \Rightarrow \nabla \rho \times \nabla \rho = 0$ If the flow is brotropic, $\rho = \rho(p) \Rightarrow \nabla \rho \times \nabla \rho = 0$

Example: peneration of circulation by brodivicity lipht P= coust. Light and heavy fluid feel the same Force (- Vp), but light fluid moves upwards paster penerating circulation

If
$$\rho = coust$$
. ($V = coust$.) and $\int couservative$

$$\Rightarrow \frac{D\omega}{Dt} = \omega \cdot \nabla u + V \nabla^2 \omega$$
Vortex stretching

In 2D

Stretosphere

Troposphere

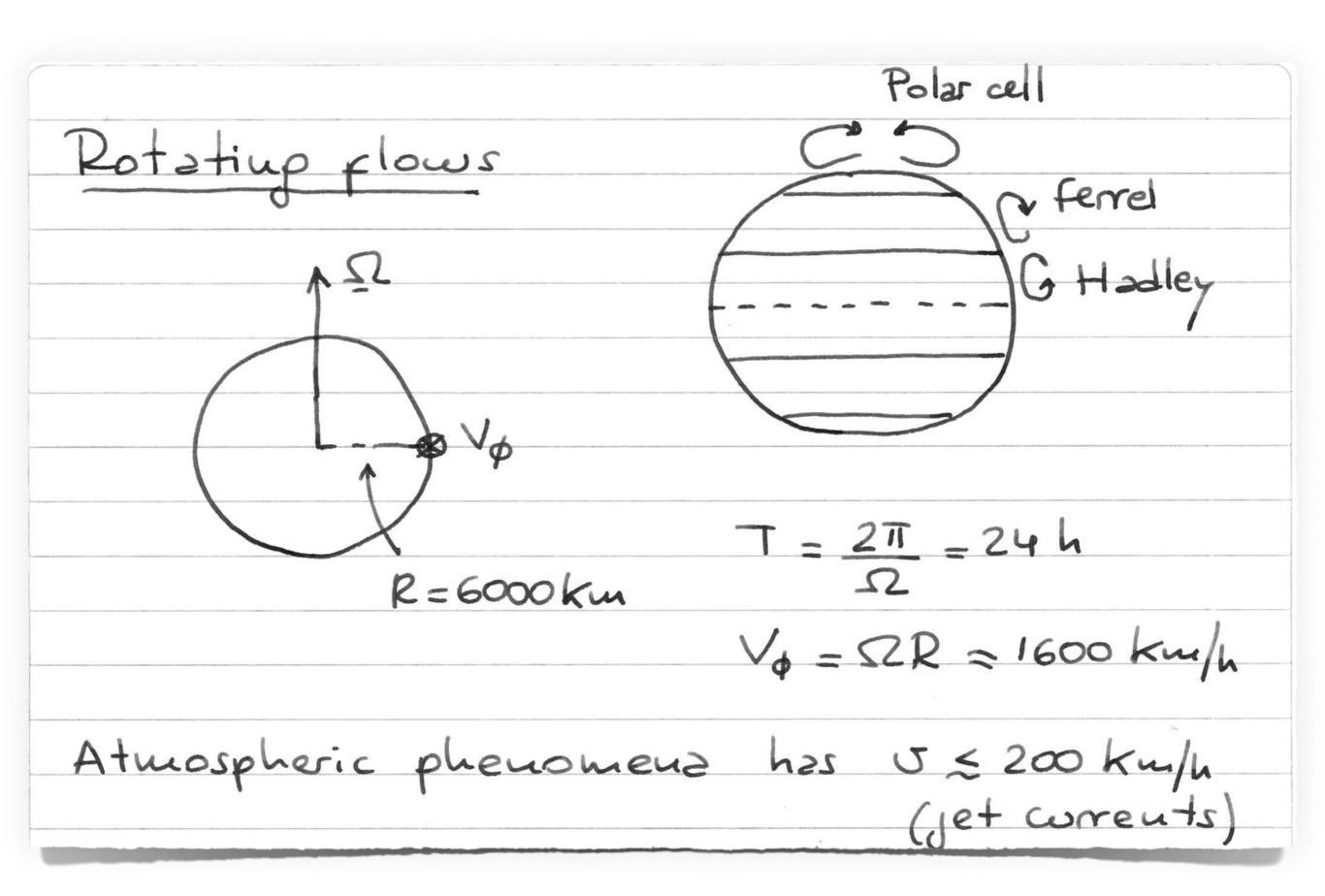
~15 km

$$U = (U_X, U_7, 0) = U(X, Y)$$

$$\omega = \nabla x u = \omega^2$$

$$\Rightarrow \frac{D\omega}{Dt} = V \nabla^2 \omega$$

$$Dt$$

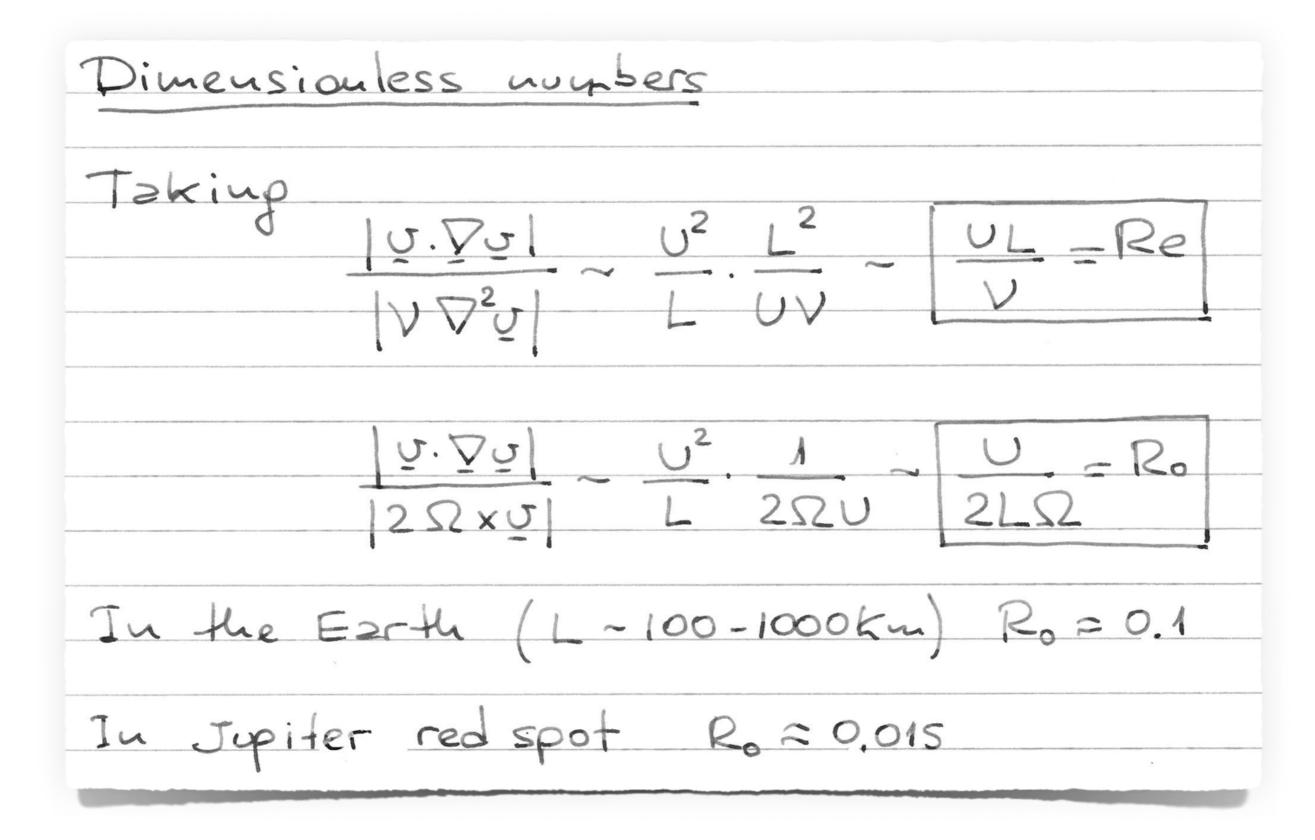


It makes sense to work in the rotating Coriolis centrifupal b (30 + a. Da) = - b 5 Ux (UxL) - VP + MV20+f the centrifupal porce can be absorbed into for p: $\overline{U} \times (\overline{U} \times L) = (\overline{U} \cdot L) \overline{U} - \overline{U}_{s} L =$ $= \mathcal{O}_{5}[(\mathcal{V} \cdot \mathbf{L}) \mathcal{V} - \mathbf{L}] = -\mathcal{V}_{5}\mathbf{L}$ => - 05x (0xc) = 05c = - 106ce with Pce = IZri

DE = 252 xv. 1 Pp + V Pv + f - Vyce

The corrects the effective provity

In the Earth the correction is $O(10^{-3})$



Tzylor-Provdusu theorem

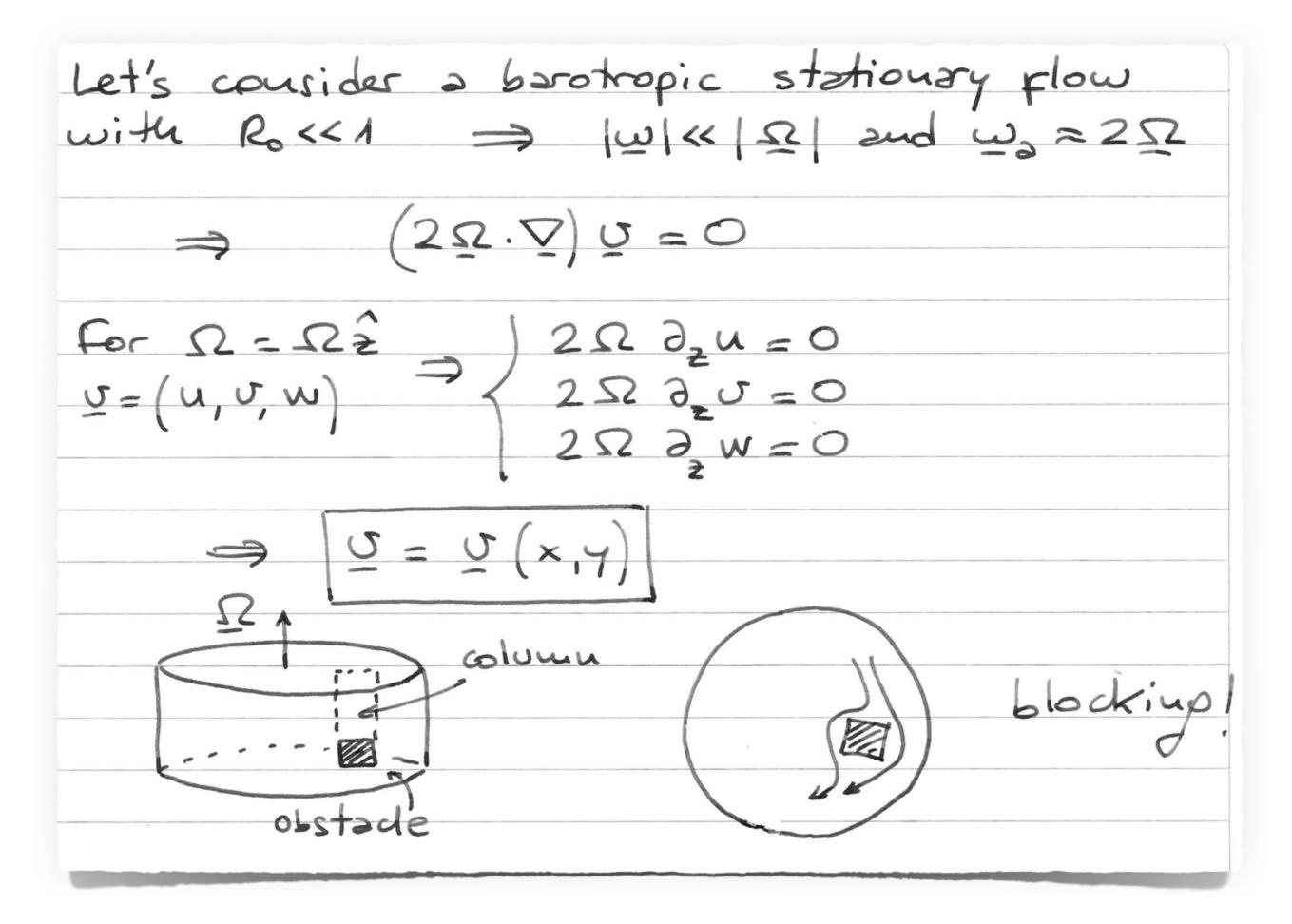
$$V = f = 0$$
, using $\sigma \cdot \nabla \sigma = -\sigma \times \omega + \nabla^2 \left(\frac{\sigma^2}{2}\right)$

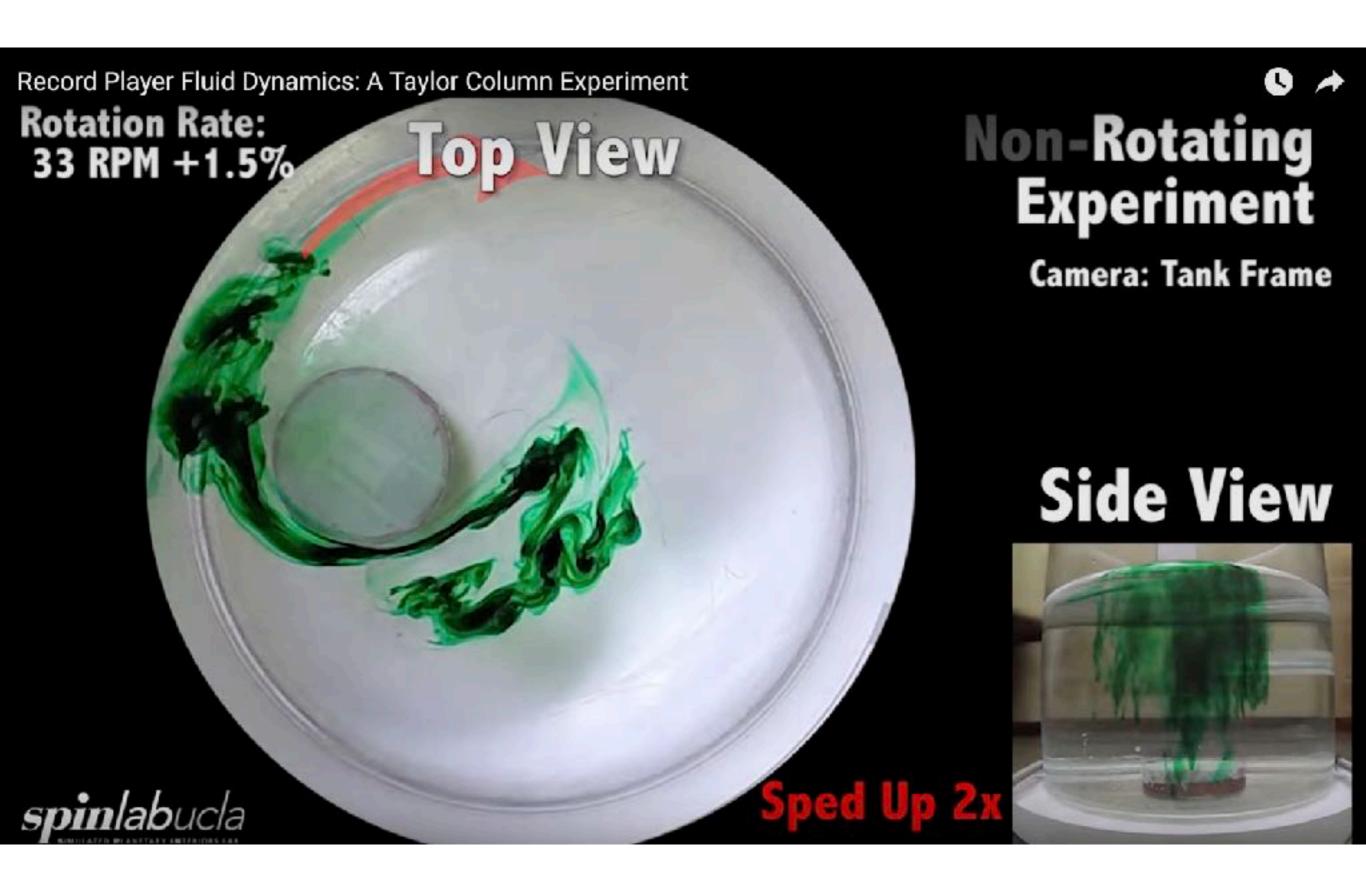
$$\Rightarrow \frac{\partial U}{\partial t} + (\omega + 2\Omega) \times U = -\frac{1}{\rho} \rightarrow p$$

Taking the curl and using

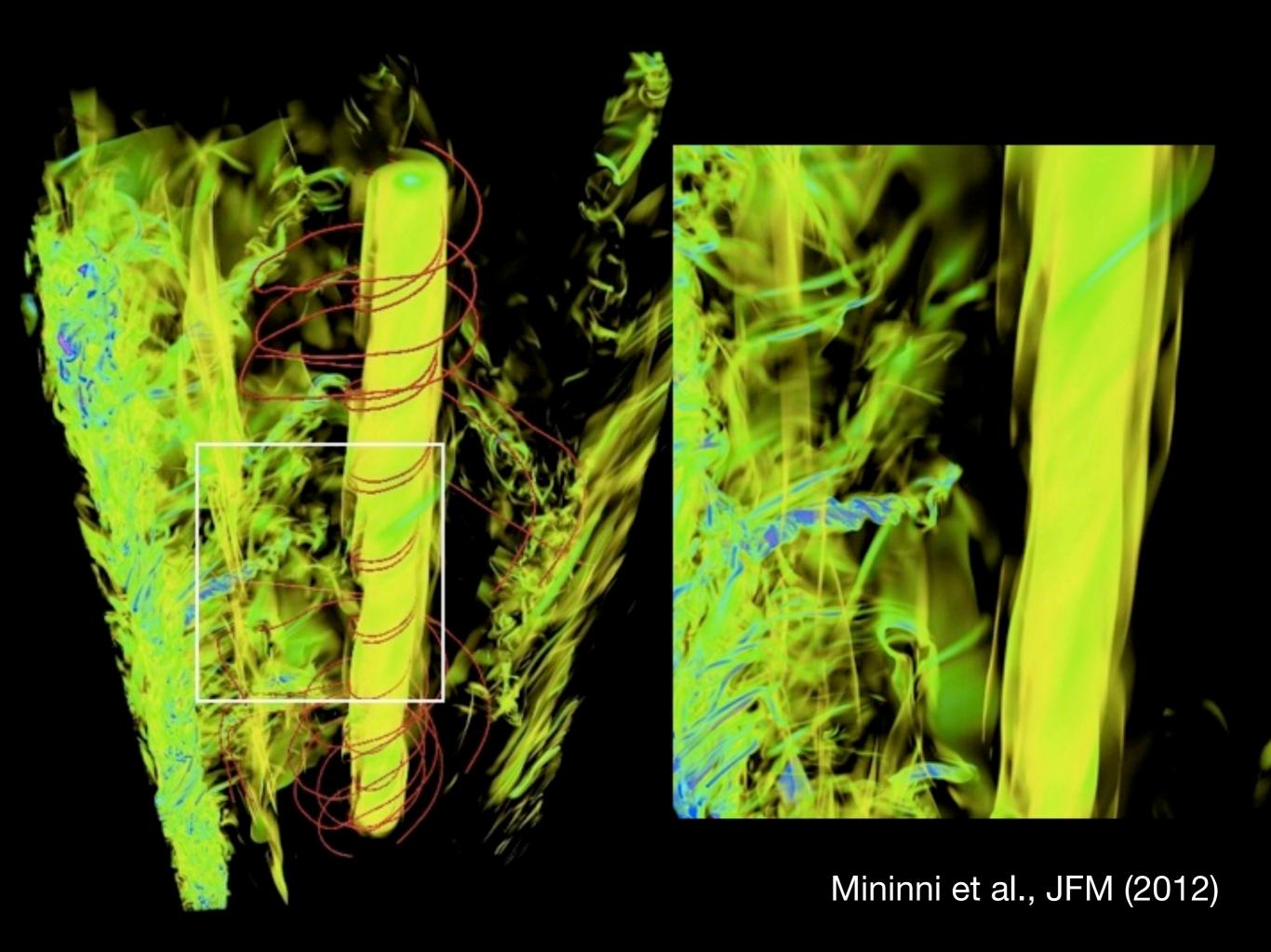
$$\nabla \times (\omega_s \times \sigma) = \omega_s \nabla \cdot \sigma - (\omega_s \cdot \nabla) \sigma + (\sigma \cdot \nabla) \omega_s$$

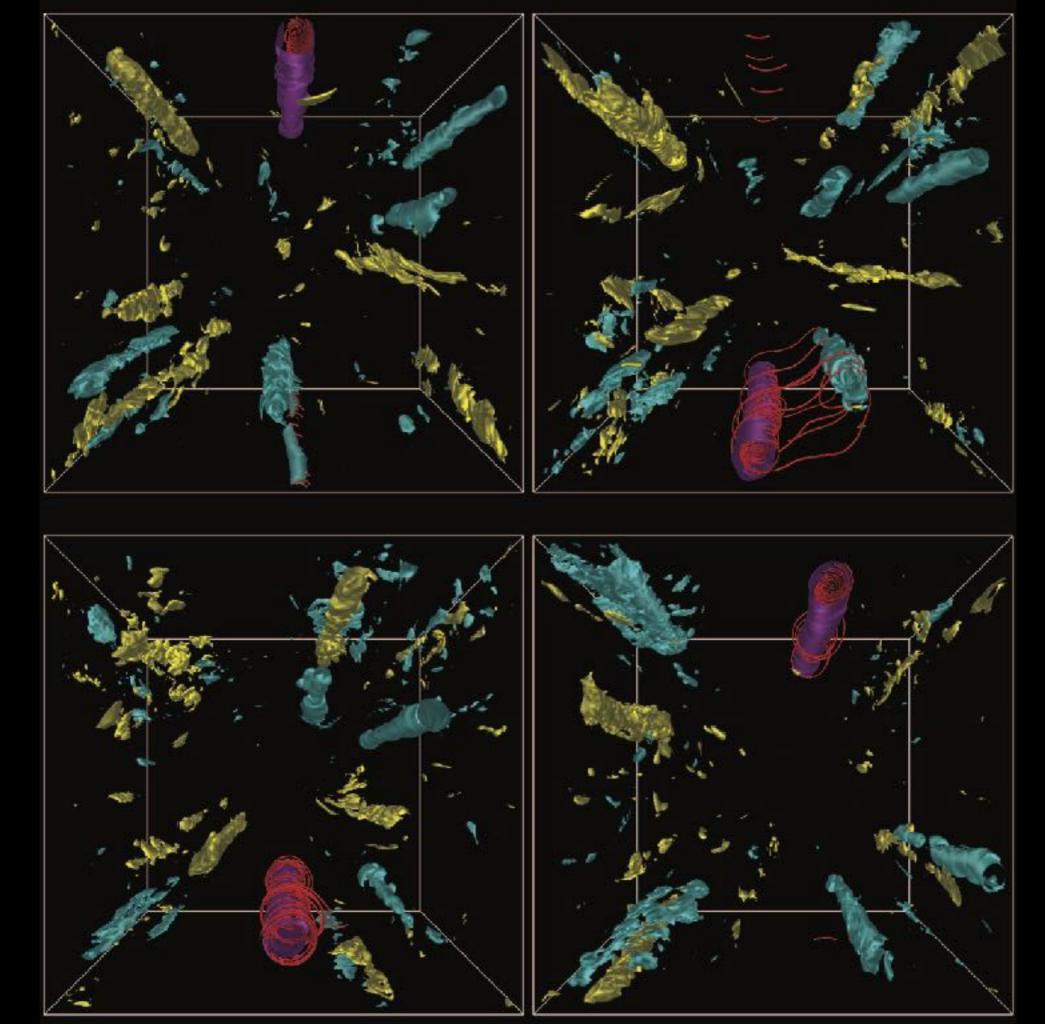
$$\Rightarrow \frac{D\omega}{Dt} = (\omega_3.\nabla) \mathcal{I} - \frac{1}{\rho^2} \nabla \rho \times \nabla \rho$$

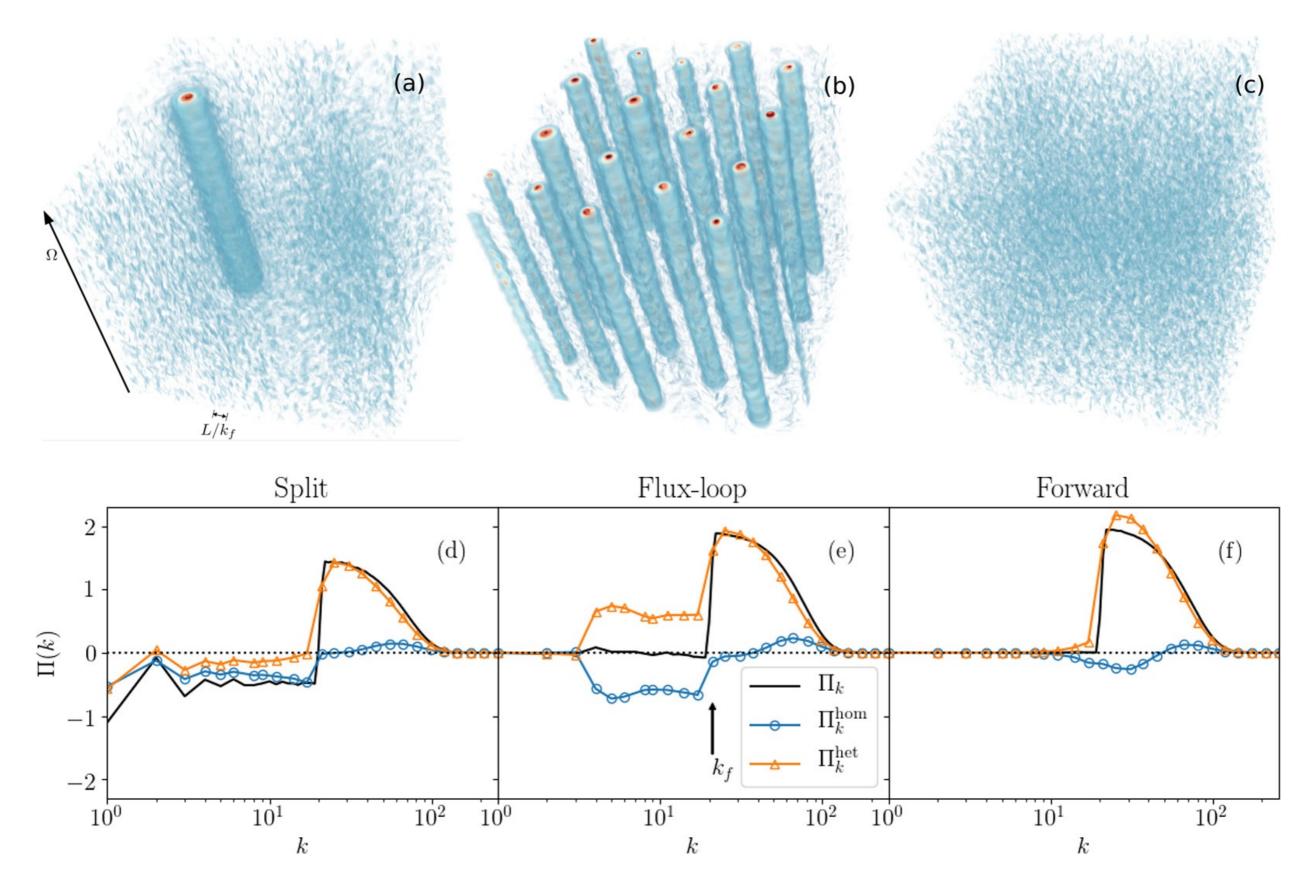




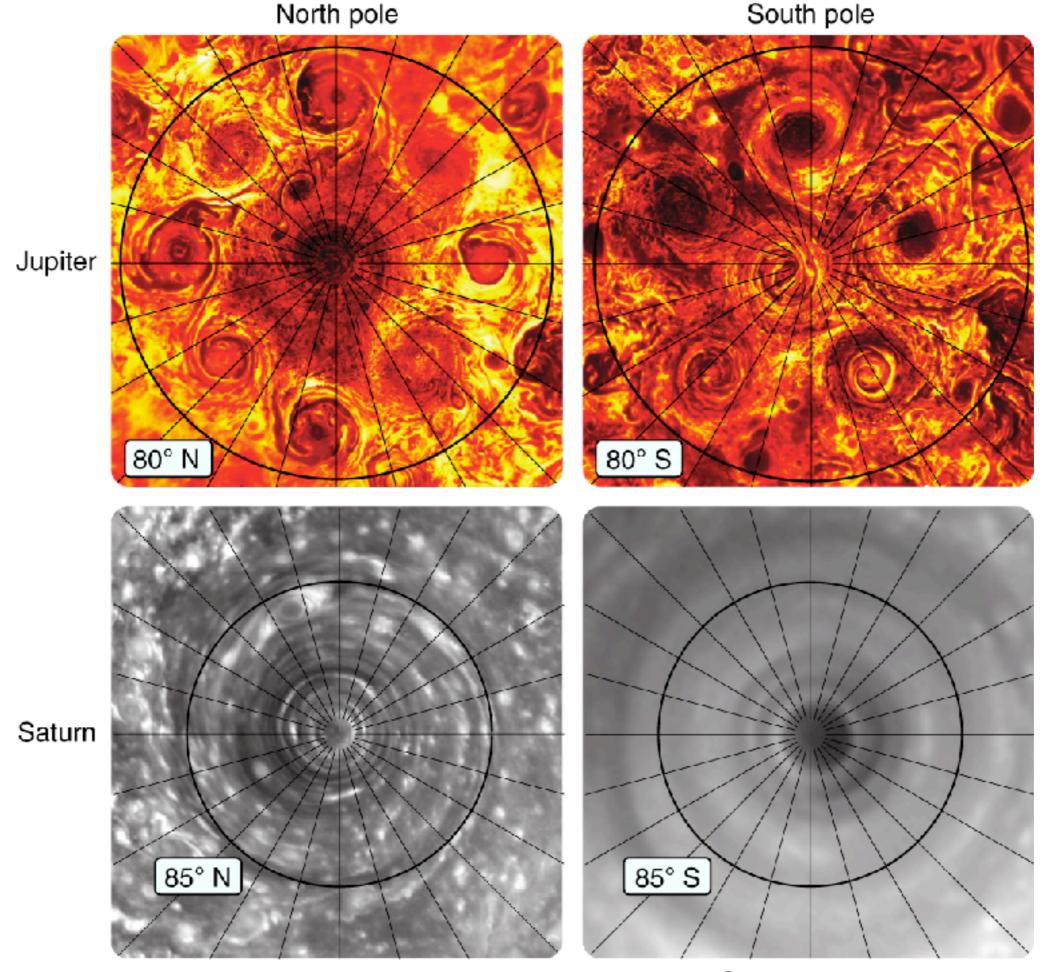
https://www.youtube.com/watch?v=7GGfsW7gOLI







Clark di Leoni, Alexakis, Biferale & Buzzicotti, PRFluids (2020)



Siegelman et al., Nat. Physics 2022)

Inertial waves Let's consider V=f=0, RoK1, borotropic => 2m + a. Dm = m3 + Da Linearizing For |w|, |v| << 1 9m = 50. Da Taking $\nabla x \frac{\partial}{\partial t}$, and using $\nabla x \nabla x \nabla = -\nabla^2 + \nabla (x \cdot \nabla)$ $\Rightarrow \frac{\partial^2}{\partial t^2} \left(\nabla^2 \mathcal{J} \right) + 4 \left(\Omega \cdot \nabla \right)^2 \mathcal{J} = 0$ It looks like a nave equation.

We look for solutions

$$\frac{\sigma}{2} = \frac{\sigma}{2} e^{i(\frac{k}{2} \cdot \frac{\kappa}{2} - \sigma t)}$$

$$\Rightarrow \frac{\sigma^{2}k^{2} - 4(\underline{\Omega} \cdot \underline{k})^{2} = 0}{k} \quad \text{Dispersion}$$

$$\Rightarrow \frac{\sigma(k)}{k} = \pm 2 \underline{\Omega} \cdot \underline{k} \quad \text{Dispersion}$$
Phase velocity
$$\underline{C\varphi} = \frac{\sigma}{k^{2}} \underline{k} = \pm 2(\underline{\Omega} \cdot \underline{k}) \underline{k}$$
Group velocity:
$$\underline{C\varphi} = \underline{\nabla}_{k} \underline{\sigma} = \pm 2 \underline{k^{2}\Omega} - (\underline{\Omega} \cdot \underline{k}) \underline{k} \quad \text{energy}$$

$$\underline{Propagation}$$

$$\underline{R} \quad \underline{\Omega} - (\underline{\Omega} \cdot \underline{k}) \hat{k}$$
Note that
$$\underline{\Omega} \cdot \underline{R} \cdot \underline{R} = \underline{R} \cdot \underline{R} \cdot \underline{R} = \underline{R} \cdot \underline{R} \cdot \underline{R} = \underline{R} \cdot \underline{R} \cdot \underline{R} \cdot \underline{R} = \underline{R} \cdot \underline{R} \cdot \underline{R} \cdot \underline{R} = \underline{R} \cdot \underline{R} \cdot \underline{R} \cdot \underline{R} \cdot \underline{R} = \underline{R} \cdot \underline{R} \cdot \underline{R} \cdot \underline{R} \cdot \underline{R} = \underline{R} \cdot \underline{R} \cdot \underline{R} \cdot \underline{R} \cdot \underline{R} \cdot \underline{R} = \underline{R} \cdot \underline{R$$

Besides w= Dxv = ikxv ei(k.x-ot) And Dw - iow - i2 (s.k) u => w= ± ku or ikxv = ±v and the waves are circularly polarized (helicoidal)

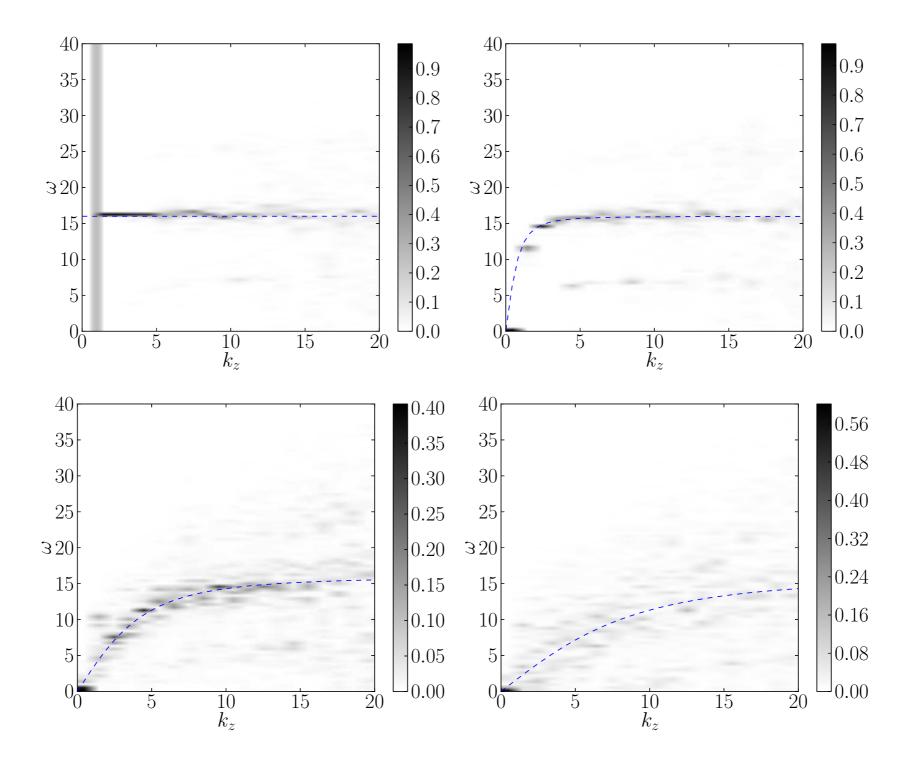
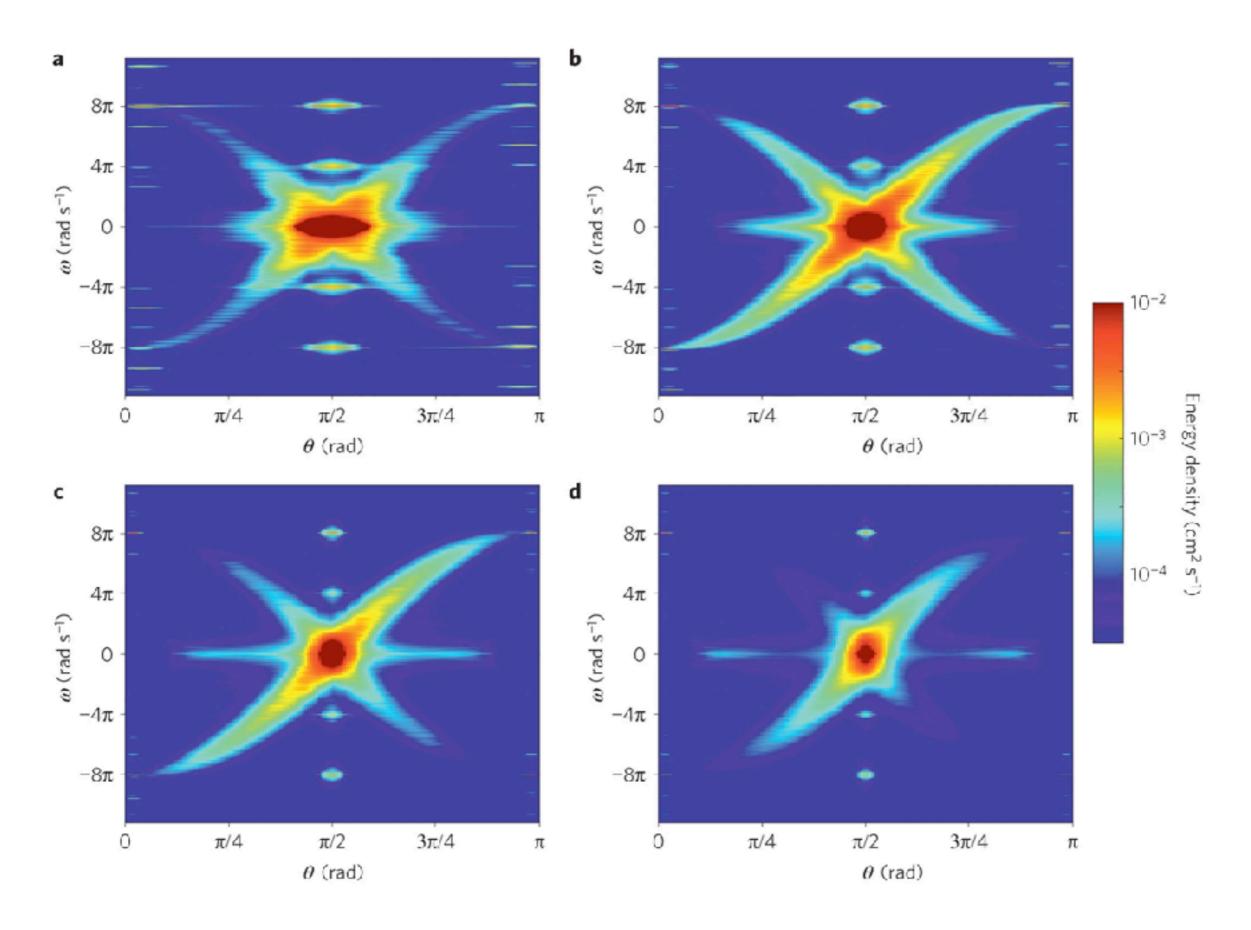


FIG. 3. Normalized wave vector and frequency spectrum $E_{11}(\mathbf{k}, \omega)/E_{11}(\mathbf{k})$ for the run with $\Omega=8$. Darker regions indicate larger energy density. The dashed curve indicates the dispersion relation for inertial waves. (Top left) Normalized $E_{11}(k_x=0, k_y=0, k_z, \omega)$. (Bottom left) Normalized $E_{11}(k_x=0, k_y=5, k_z, \omega)$. (Bottom right) Normalized $E_{11}(k_x=0, k_y=10, k_z, \omega)$. Note from the maximum values in the color bars how the modes close to the dispersion relation concentrate most of the energy in the first two cases $(k_y=0 \text{ and } k_y=1)$, while as k_y is increased energy becomes more spread.



Yarom & Sharon, Nature Physics (2014)

