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A multiscale problem

... with strongly non Gaussian statistics 

Turbulent flows
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Lagrangian approach:

Lagrangian pair trajectories separation:
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Ẋt = v(Xt, t)

<latexit sha1_base64="ezWOCuscy+dM7ids+9fQOzbwAOg=">AAACsHicbVFLa9tAEF6pr1R9Oe2xlyGmJaXUSCE0vRRCE0qOSagTg9eI0WrsbLNaid1VIAj/s/6RHvJfslJ0qO3OZb/9Zr55ZpWS1sXx3yB89PjJ02dbz6MXL1+9fjPYfnthy9oIGotSlWaSoSUlNY2ddIomlSEsMkWX2fVR67+8IWNlqX+524pmBS60nEuBzlPp4A/PaCF1I3wOu4x4hcZJVKkDnpUqt7eFf+AGPsPuKsFFXvogjZnCT6uu7/DlgYfK6/jcoGiSZXNOS+DHpBxu5O7+8BM+AudRr+0LrGWOI04679tNB8N4FHcGmyDpwZD1dpoO7nheirog7YRCa6dJXLlZ084sFPnxa0sVimtc0NRDjQXZWdNteQkfaouuhIoMSAUdSf8qGixs26mPLNBd2XVfS/7PN63d/NuskbqqHWnRFnJSUVfICiP9+Qhyacg5bDsnkBoEGnSOjAQUwpO1v2fk95GsT78JLvZGydfR/tn+8PBHv5kt9p7tsF2WsAN2yE7YKRszEewEJ8FZcB7uhZMwDfEhNAx6zTu2YuHve0aC0a0=</latexit>(
@tv + (v ·r)v = �rp+ 1

Re�v + F

r · v = 0

mailto:massimo.cencini@cnr.it


Outline  -topic 3-

• Recall of the Eulerian view of scalar fields


• Lagrangian view of scalar transport: basic ideas


•  interpretation of dissipative anomaly

•  intermittency, origin of universality and zero modes 


• Some extra (depending on time): active scalars



(Passive) Scalar Turbulence

Fields transported by turbulent flows

Passive scalar fields
velocity is given and not

modified by the transported field

∂tc + v · ∇c = κ∆c + Fc

Yaglom relation (similar to 4/5-law)

〈δrv(δrc)2〉 = −4/3εcr

Phenomenology very similar to NS

• Cascade towards the small scales
• Finite energy dissipation

• Intermittency of the small scales

Goals: understanding dynamics and statistics as a function of the
properties of v, universality?

Active Scalar Turbulence – p.3/13
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Active Scalar Turbulence – p.3/13

Passive scalar turbulence
COLORANT DYE IN A JET FLOW

Shraiman & Siggia, Nature 405, 639 (2000)

Universality in turbulent systems? – p.7/22

for  κ → 0



(Passive) Scalar TurbulencePassive scalar turbulence
∂tc + v · ∇c = κ∆c + Fc

Kf Kd

K
E(K)
c −5/3

F

v

k

Dissipative anomaly 〈κ|∇c|2〉=εc≈〈cFc〉

Yaglom Relation
〈δrv(δrc)2〉 = −4

3εcr

assume K41 turbulence δrv ∼ (εvr)1/3

by dimensional arguments δrc ∼ ε
1
2
c ε

− 1
6

v r
1
3

Phenomenology similar to NS (cascade, anomalous scaling and
dissipative anomaly) but the equation is linear in c

Universality in turbulent systems? – p.7/22
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(Passive) Scalar Turbulence

F. Moisy, H. Willaime, J.S. Andersen P. Tabeling

PRL 86, 4827 (2001)

Warhaft, Ann. Rev. Fluid Mech. 32, 203 (2000) 

Anomalous scaling and universality
〈(δrc)n〉 = Bn(ε1/2

c ε−1/6
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DNS & experiments: σn are universal
(Warhaft, Ann. Rev. Fluid Mech. 32, 203 (2000))

origin of anomalous scaling and universality? solved in 1995!!

Anomalous scaling of c also in self-similar velocity fields
(Kraichnan, Phys. Rev. Lett. 72, 1016 (1994) Holzer & Siggia, Phys. Fluids 6, 1820 (1994))

Universality in turbulent systems? – p.8/22

IN 3D turbulent flows 

Scalar increments display

anomalous scaling


and the exponents appear

to be universal



(Passive) Scalar Turbulence
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Sn(r) = h(�rc)ni
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Sn(r) = h(�rc)ni

In 2D turbulence in the inverse cascade of velocity: the velocity field is non intermittent and display K41 scaling 
yet the scalar field is intermittent and the exponents are universal 

So scalar intermittency is not inherited from velocity intermittency!!!

A Celani, A Lanotte, A., Mazzino, M Vergassola,  PRL  84, 2385 (2000);  & PoF, 13, 1768-1783 (2001)




Lagrangian view of scalar transport

Notes on Rotational Brownian Motion

Massimo Cencini1

1CNR-ISC, Via dei Taurini 19, 00185 Roma, Italy.

I. NOTES ON LAGRANGIAN VIEW OF SCALAR TURBULENCE

@t✓ + v ·r✓ = �✓ + F (1)

Assumption: incompressibility ! r · v = 0

Assumption: ! Time uncorrelated, Gaussian Forcing

hF (x, t)F (y, t0)iF = �(t� t0)�(|x� y|) (2)

Eq. (1) is equivalent to the SDE:

ẏ(s) = v(y(s), s) +
p
2⌘(s) h⌘(t)⌘(t0)i = �(t� t0) (3)

�̇(s) = F (y(s), s) (4)

Assuming ✓(x,�1) = 0 we have that (the lower bound to �1 is implicit) It is easily proven that

✓(x, t) =

Z t

dshF (y(s;x, t), s)i⌘ (5)

Which, by introducing pv(y, s|x, t) = h�(y � y(s;x, t)i⌘ the Lagrangian propagator pv(y, t|x, t) = �(x � y) (notice
that it depends on the velocity!), can be rewritten as

✓(x, t) =

Z t

ds

Z
dypv(y, s|x, t)F (y, s) (6)

To prove that this solves the scalar transport equation (1) use

@tpv(y, s|x, t) = �v ·rpv(y, s|x, t) + �pv(y, s|x, t) (7)

II. MULTIPOINT CORRELATION FUNCTIONS

In principle, we are interested in understanding the scaling behavior of structure functions, i.e.

SN (r) = h(✓(x+ r, t)� ✓(x, t))N iv,F (8)

However, SN can be rewritten as:

SN (r) = h(✓(x+r, t)�✓(x, t))N iv,F = h
✓Z 1

0
@s✓(x+ sr)ds

◆N

iv,F = @s1 . . . @sN

Z 1

0
ds1 . . .

Z 1

0
dsNCN (x+s1r, . . . ,x+sNr)

(9)
and so can be expressed as combination of multipoint correlation function. It is thus more general to study such
multipoint correlation functions.

A. C2

Let’s start from the Two point correlation function:

C2(x1,x2; t) = h✓(x1, t)✓(x2, t)iF,v =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)ivhF (y1, s1)F (y2, s2)i (10)

is equivalent to the SDE
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Lagrangian  propagator

Eulerian and Lagrangian description

0< s <t

x

(y,s|x,t)P

s

t

θ(x, t) =

〈∫ t

−∞

dsFθ(X(s), s)

〉

=

∫ t

−∞

ds

∫

dy p(y, s|x, t) Fθ(y, s)

Understanding the Lagrangian statistics and dynamics is crucial to understand scalar fields transport.

The connection between Lagrangian paths and scalar field holds both for passive and active scalars, it

comes solely from the formal structure of the transport equation that is the same in both cases.
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Eq. (1) is equivalent to the SDE:

ẏ(s) = v(y(s), s) +
p
2⌘(s) h⌘(t)⌘(t0)i = �(t� t0) (3)

�̇(s) = F (y(s), s) (4)

Assuming ✓(x,�1) = 0 we have that (the lower bound to �1 is implicit) It is easily proven that

✓(x, t) = h�i⌘|y(t)=x =

Z t

dshF (y(s;x, t), s)i⌘ (5)

Which, by introducing pv(y, s|x, t) = h�(y � y(s;x, t)i⌘ the Lagrangian propagator pv(y, t|x, t) = �(x � y) (notice
that it depends on the velocity!), can be rewritten as

✓(x, t) =

Z t

ds

Z
dypv(y, s|x, t)F (y, s) (6)

To prove that this solves the scalar transport equation (1) use

@tpv(y, s|x, t) = �v ·rpv(y, s|x, t) + �pv(y, s|x, t) (7)

II. MULTIPOINT CORRELATION FUNCTIONS

In principle, we are interested in understanding the scaling behavior of structure functions, i.e.

SN (r) = h(✓(x+ r, t)� ✓(x, t))N iv,F (8)

However, SN can be rewritten as:

SN (r) = h(✓(x+r, t)�✓(x, t))N iv,F = h
✓Z 1

0
@s✓(x+ sr)ds

◆N

iv,F = @s1 . . . @sN

Z 1

0
ds1 . . .

Z 1

0
dsNCN (x+s1r, . . . ,x+sNr)

(9)
and so can be expressed as combination of multipoint correlation function. It is thus more general to study such
multipoint correlation functions.

A. C2

Let’s start from the Two point correlation function:

C2(x1,x2; t) = h✓(x1, t)✓(x2, t)iF,v =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)ivhF (y1, s1)F (y2, s2)i (10)
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Note that  in passive scalars the propagator and the forcing are independent
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The anomalous scaling ζdim
N != ζc

N signals the breakdown of scale invariance, as confirmed
by the explicit appearance of "f in (6), even at scales r " "f . Indeed, anomalous scaling of the
moments of scalar increments is equivalent to state that the probability density functions (pdfs)
of δrc at different values of r cannot be collapsed by rescaling them with a unique power law in r.
Even though the specific values of the exponents ζc

N depend on the details of the flow (statistics,
time correlation and roughness exponent h), intermittency and the breaking of scale invariance
in the scalar statistics are generic features of passive scalar turbulence.

The physical mechanism leading to anomalous scaling has been recently understood in the
framework of the Kraichnan model of scalar advection [20, 21] (see [22]–[25] for exhaustive
reviews on the subject). In this model, the advecting flow v is random, Gaussian, self-similar and
δ-correlated in time. Under these special conditions, there exists a closed set of linear equations
for multi-point correlation functions. The anomalous exponents are the scaling exponents of
the homogeneous solutions (the so-called zero modes) of those equations. Since homogeneous
solutions do not depend, by definition, on the scalar input, their scaling exponents are universal
and cannot be inferred from dimensional arguments. The concept of zero mode can be extended
to passive scalar turbulence in generic velocity fields [26].

The properties of passive scalars described above are in the language of fields—the Eulerian
description. It is of interest to adopt now a different, but equivalent viewpoint in terms of particle
trajectories, namely the Lagrangian description.

2.2. Lagrangian description

The basic idea of the Lagrangian approach is to solve equation (2) by the method of characteristics.
Let us denote ρ(s; x, t) as the trajectory of a fluid particle landing at point x at time t (henceforth,
whenever there is no ambiguity, we indicate this as ρ(s)). The path ρ(s) is the solution of the
stochastic differential equation

dρ(s)

ds
= v(ρ(s), s) +

√
2κẇ(s), ρ(t) = x, (7)

where i, j = 1, . . . , d (d being the space dimensionality) and ẇ(s) is a Wiener process (the
derivative of a Brownian motion), i.e. ẇi are Gaussian variables of zero mean and correlation
〈ẇi(s)ẇj(s

′)〉 = δijδ(s − s′). Along the path ρ(s), equation (2) reduces to

dφw(s)

ds
= fc(ρ(s), s), (8)

which is easily solved as φw(t) =
∫ t

0 ds fc(ρ(s), s). For the sake of simplicity, we assumed
φw(0) = 0. We indicated, with φw, the solution obtained along the path ρ obtained for a specific
realization of the process w. The passive scalar field c(x, t) is recovered by averaging over all
the realizations of w, i.e. along all the Lagrangian paths ending in x at time t [27]:

c(x, t) = 〈φw(t)〉w =
〈∫ t

0
ds fc(ρ(s), s)

〉

w

. (9)

The statistic of the trajectories is summarized in the particle propagator P(y, s|x, t) =
〈δ(y − ρ(s; x, t)〉w, which is the probability of finding a particle at point y and time s ! t,
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the passive scalar scaling laws are universal with respect to the injection mechanism. On the
contrary, for active fields, the presence of the feedback couples the velocity with the transported
scalar and makes the problem fully nonlinear. In this case, the theoretical tools developed for
studying the passive problem may fall short of explaining the behaviour of active scalars, and the
current understanding of active turbulent transport lags far behind the knowledge accumulated
on the passive counterpart. This state of the art motivated us to pursue a ‘case study’ on turbulent
transport of active and passive scalars using the scaling properties of fields evolving in the same
turbulent flow as the basic diagnostics for comparison.

We consider four different systems belonging to the following general classes of problems:
(i) active scalars that influence the flow through local forces; and (ii) active fields functionally
related to the velocity.

The evolution of a scalar belonging to the first class is described in terms of the following
set of equations:

∂ta + v · ∇a = κ# a + fa, (1)

∂tc + v · ∇c = κ# c + fc, (2)

∂tv + v · ∇v = −∇p + ν#v + F [a, ∇a, . . . ], (3)

where a and c are the active and passive scalar fields, respectively, and obey the advection–
diffusion equations (1) and (2). The scalar inputs fa and fc have a characteristic lengthscale %f ,
and represent two different realizations of the same stochastic process. Were they coincident,
no difference between active and passive fields would persist. For the sake of simplicity, we
use the same molecular diffusivity κ for both scalars. The active character of a is embodied
by the term F [a, ∇a, . . . ], which acts as a forcing for the velocity field in the Navier–Stokes
equations. The specific form of the term F depends on the physical system under investigation.
In the following, we shall consider two examples from this class: thermal convection [4, 5],
where a is the temperature field and F = −βag the buoyancy force, and two-dimensional
(2D) magnetohydrodynamics (MHD) [6], where a the magnetic potential and F = −#a∇a
the Lorentz force.

The second class of active scalars is relevant to geophysical flows [7, 8]. In this case, the
dynamics is described in terms of a scalar field obeying the advection–diffusion equation (1),
supplemented by a functional relation that gives v in terms of a:

vi(x, t) =
∫
'i(x − y)a(y, t) dy. (4)

Here, the vector-valued kernel ! is divergence-free. A well-known instance from such a class is
the 2D Navier–Stokes equation, where the active scalar is the vorticity ∇ × v. Another problem
which we shall discuss is the turbulent flow on the flat surface of an infinitely high fluid, described
by the surface-quasi-geostrophic equation [9, 10]. Here, the active scalar is the fluid density, which
is related (e.g. for ideal gases) to the so-called potential temperature.

Some of the results presented in this paper were discussed previously in [11]–[13]. Related
investigations on active and passive transports may be found in [14]–[17].

This paper is organized as follows. In section 2, we briefly review some results about passive
scalar transport in turbulent flows. Particular emphasis is put on the Lagrangian description of
scalar transport, pointing out the results which hold for active scalars as well. In section 3, the
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statistics of the (active) temperature and a passive scalar field in 2D convection is discussed.
Section 4 is devoted to the analysis of 2D MHD, with a thorough discussion of the problem of
dissipative anomaly in scalar transport. In section 5, the evolution of passive and active fields in
Ekman–Navier–Stokes turbulence is discussed. In section 6, we study the properties of turbulence
on fluid surfaces under the quasi-geostrophic approximation. In the last section, we summarize
the main findings and delineate the perspectives for active scalar transport.

2. Passive scalar turbulence

2.1. Eulerian approach

The dynamics of passive scalars is governed by the advection–diffusion equation (2). To describe
the general properties of passive scalar evolution in turbulent incompressible velocity fields,
we assume that the velocity field v is scale-invariant and rough. In other words, the spatial
increments δrv = (v(x + r, t) − v(x, t)) · r/r depend on the separation r as a fractional power,
i.e. δrv ∼ rh with h < 1 (e.g. h = 1/3 in Kolmogorov’s 1941 turbulence [18]). Being interested
in the statistically steady properties of the field, we introduce a source of scalar fluctuations fc.
In the following, we take for convenience a random, Gaussian, statistically homogeneous and
isotropic forcing with zero mean and correlation function

〈fc(x1, t)fc(x2, t
′)〉 = δ(t − t′)F(|x1 − x2|/"f ). (5)

The correlation function of the forcing F(r/"f ) is roughly constant at scales smaller than "f ,
which is assumed to be within the scaling range of v, and decreases rapidly to zero for r > "f .

The phenomenology of passive scalar turbulence may be summarized as follows. Scalar
fluctuations injected at the scale "f are transferred towards the small scales with a constant
flux down to the dissipative scale "d . There, the molecular diffusion absorbs the incoming flux
and ensures the equilibrium between the input and the dissipation. The fluctuations are thus
maintained in a statistically steady state, which is characterized by two major properties. First,
the scalar dissipation is asymptotically independent of the molecular diffusivity κ, attaining
a finite non-zero limiting value for κ → 0. This singular behaviour of the dissipation is also
known as dissipative anomaly. Second, in the scaling range "d ' r ' "f , the scalar statistics
is intermittent. This amounts to saying that the small-scale statistics is characterized alternation
between strong, rare events, where scalar increments δrc = c(x + r, t) − c(x, t) are much larger
than their typical value, crms , and long quiescent phases, where δrc ' crms. Intermittency is
reflected by the scaling behaviour of the structure functions, i.e. the moments of the scalar
increments

Sc
N(r) = 〈(δrc)N〉 ∝ rζ

dim
N

(
"f

r

)ζdim
N −ζcN

. (6)

The scaling exponents ζc
N are said to be anomalous when they deviate from the dimensional

expectation ζdim
N = N(1 − h)/2. The equality ζc

N = ζdim
N holds probably only for N = 2 [4],

whereas for N > 2, the deviations become increasingly severe. The asymptotic behaviour at
large orders N corresponds to the saturation ζc

N → ζc
∞ [19]. The saturation is related to the

presence of sharp ‘fronts’ in the scalar field. The exponents ζc
N are universal with respect to

the details of the energy injection statistics. The forcing only affects the numerical prefactors
appearing in the structure functions.
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which is approximately the average time T!f (r) taken by two coinciding particles to reach a
separation r. For a Kolmogorov’s 1941 turbulent flow (h = 1/3), one has Sc

2(r) ∼ r2/3, i.e.
Ec(k) ∼ k−5/3, which is the Oboukov–Corrsin dimensional expectation [4].

The Lagrangian description can be extended also to higher-order statistics as multipoint
correlation functions Cc

N(x1, . . . , xN) = 〈c(x1, t) . . . c(xN, t)〉. However, when many points come
into play, their geometrical arrangement becomes crucial. Dimensional arguments, which are
based on the size of the configuration but forcibly neglect the ‘angular’ information, fall short
of capturing the observed behaviour for multipoint observables. A detailed discussion of their
properties is beyond the scope of this brief review. In the following, we just summarize the main
concepts, referring to [25, 29] for further reading.

Expanding the power in the definition of the structure functions Sc
N(r), it is necessary to

express them as a linear combination of N-point correlation functions (see e.g. (15) for Sc
2(r)).

Therefore, the latter must contain a contribution, denoted as Zc
N(x1, . . . , xN), which carries

the anomalous scale dependence: Zc
N(λx1, . . . , λxN) = λζ

c
NZc

N(x1, . . . , xN) [22]–[24]. From a
Lagrangian viewpoint, the function Zc

N has a special property that distinguishes it from a generic
scaling function. A remarkable finding is that [26, 29]

d
dt

〈Zc
N〉L = 0, (16)

where the derivative d/dt is taken along the trajectories of N particles advected by the flow and
the average is over the ensemble of all trajectories. In other terms, Zc

N is statistically preserved by
the flow [26, 30]. The universality of scaling exponents is then just a by-product of the definition
of statistically preserved structures: since fc does not appear in equation (16), the properties of
zero modes are insensitive to the choice of the forcing.

2.3. Dissipative anomaly

In spite of the continuous injection of scalar through the pumping fc, the second-order moment
〈c2(x, t)〉 does not grow indefinitely even in the limit κ → 0. This is due to the existence of a
finite non-zero limit of the scalar dissipation εc = κ|∇c|2, which is the dissipative anomaly.

To understand how 〈c2(x, t)〉 achieves a finite value independent of the diffusivity coefficient,
we adopt the Lagrangian viewpoint. From equation (13), we have

〈c2(x, t)〉 =
〈∫ t

0

∫ t

0
ds1 ds2fc(ρ(s1; x, t))fc(ρ(s2; x, t))

〉
=

〈 (∫ t

0
dsfc(ρ(s; x, t))

)2 〉
, (17)

where the brackets indicate the average over the scalar forcing, the velocity field and the noise.
Looking naively at equation (17), one might expect that for a large class of random forcing

of zero mean, the r.h.s. of the above expression would grow linearly with t. For instance, when the
forcing is Gaussian and δ-correlated in time, one could argue that equation (17) is essentially the
sum of independent variables and, by central limit theorem arguments, conclude that 〈c2〉 ∝ t.
This conclusion would be correct if, in the limit κ → 0, all trajectories collapse onto a unique
Lagrangian path. This turns out to be the case for strongly compressible flows, but not in general.
For compressible flows, energy indeed grows linearly in time and the advected scalar performs an
inverse cascade process [31, 32]. In contrast, in rough incompressible flows, coinciding particles
typically separate in a finite time, giving rise to multiple paths.As a consequence, a self-averaging
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The anomalous scaling ζdim
N != ζc

N signals the breakdown of scale invariance, as confirmed
by the explicit appearance of "f in (6), even at scales r " "f . Indeed, anomalous scaling of the
moments of scalar increments is equivalent to state that the probability density functions (pdfs)
of δrc at different values of r cannot be collapsed by rescaling them with a unique power law in r.
Even though the specific values of the exponents ζc

N depend on the details of the flow (statistics,
time correlation and roughness exponent h), intermittency and the breaking of scale invariance
in the scalar statistics are generic features of passive scalar turbulence.

The physical mechanism leading to anomalous scaling has been recently understood in the
framework of the Kraichnan model of scalar advection [20, 21] (see [22]–[25] for exhaustive
reviews on the subject). In this model, the advecting flow v is random, Gaussian, self-similar and
δ-correlated in time. Under these special conditions, there exists a closed set of linear equations
for multi-point correlation functions. The anomalous exponents are the scaling exponents of
the homogeneous solutions (the so-called zero modes) of those equations. Since homogeneous
solutions do not depend, by definition, on the scalar input, their scaling exponents are universal
and cannot be inferred from dimensional arguments. The concept of zero mode can be extended
to passive scalar turbulence in generic velocity fields [26].

The properties of passive scalars described above are in the language of fields—the Eulerian
description. It is of interest to adopt now a different, but equivalent viewpoint in terms of particle
trajectories, namely the Lagrangian description.

2.2. Lagrangian description

The basic idea of the Lagrangian approach is to solve equation (2) by the method of characteristics.
Let us denote ρ(s; x, t) as the trajectory of a fluid particle landing at point x at time t (henceforth,
whenever there is no ambiguity, we indicate this as ρ(s)). The path ρ(s) is the solution of the
stochastic differential equation

dρ(s)

ds
= v(ρ(s), s) +

√
2κẇ(s), ρ(t) = x, (7)

where i, j = 1, . . . , d (d being the space dimensionality) and ẇ(s) is a Wiener process (the
derivative of a Brownian motion), i.e. ẇi are Gaussian variables of zero mean and correlation
〈ẇi(s)ẇj(s

′)〉 = δijδ(s − s′). Along the path ρ(s), equation (2) reduces to

dφw(s)

ds
= fc(ρ(s), s), (8)

which is easily solved as φw(t) =
∫ t

0 ds fc(ρ(s), s). For the sake of simplicity, we assumed
φw(0) = 0. We indicated, with φw, the solution obtained along the path ρ obtained for a specific
realization of the process w. The passive scalar field c(x, t) is recovered by averaging over all
the realizations of w, i.e. along all the Lagrangian paths ending in x at time t [27]:

c(x, t) = 〈φw(t)〉w =
〈∫ t

0
ds fc(ρ(s), s)

〉

w

. (9)

The statistic of the trajectories is summarized in the particle propagator P(y, s|x, t) =
〈δ(y − ρ(s; x, t)〉w, which is the probability of finding a particle at point y and time s ! t,
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derivative of a Brownian motion), i.e. ẇi are Gaussian variables of zero mean and correlation
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the passive scalar scaling laws are universal with respect to the injection mechanism. On the
contrary, for active fields, the presence of the feedback couples the velocity with the transported
scalar and makes the problem fully nonlinear. In this case, the theoretical tools developed for
studying the passive problem may fall short of explaining the behaviour of active scalars, and the
current understanding of active turbulent transport lags far behind the knowledge accumulated
on the passive counterpart. This state of the art motivated us to pursue a ‘case study’ on turbulent
transport of active and passive scalars using the scaling properties of fields evolving in the same
turbulent flow as the basic diagnostics for comparison.

We consider four different systems belonging to the following general classes of problems:
(i) active scalars that influence the flow through local forces; and (ii) active fields functionally
related to the velocity.

The evolution of a scalar belonging to the first class is described in terms of the following
set of equations:

∂ta + v · ∇a = κ# a + fa, (1)

∂tc + v · ∇c = κ# c + fc, (2)

∂tv + v · ∇v = −∇p + ν#v + F [a, ∇a, . . . ], (3)

where a and c are the active and passive scalar fields, respectively, and obey the advection–
diffusion equations (1) and (2). The scalar inputs fa and fc have a characteristic lengthscale %f ,
and represent two different realizations of the same stochastic process. Were they coincident,
no difference between active and passive fields would persist. For the sake of simplicity, we
use the same molecular diffusivity κ for both scalars. The active character of a is embodied
by the term F [a, ∇a, . . . ], which acts as a forcing for the velocity field in the Navier–Stokes
equations. The specific form of the term F depends on the physical system under investigation.
In the following, we shall consider two examples from this class: thermal convection [4, 5],
where a is the temperature field and F = −βag the buoyancy force, and two-dimensional
(2D) magnetohydrodynamics (MHD) [6], where a the magnetic potential and F = −#a∇a
the Lorentz force.

The second class of active scalars is relevant to geophysical flows [7, 8]. In this case, the
dynamics is described in terms of a scalar field obeying the advection–diffusion equation (1),
supplemented by a functional relation that gives v in terms of a:

vi(x, t) =
∫
'i(x − y)a(y, t) dy. (4)

Here, the vector-valued kernel ! is divergence-free. A well-known instance from such a class is
the 2D Navier–Stokes equation, where the active scalar is the vorticity ∇ × v. Another problem
which we shall discuss is the turbulent flow on the flat surface of an infinitely high fluid, described
by the surface-quasi-geostrophic equation [9, 10]. Here, the active scalar is the fluid density, which
is related (e.g. for ideal gases) to the so-called potential temperature.

Some of the results presented in this paper were discussed previously in [11]–[13]. Related
investigations on active and passive transports may be found in [14]–[17].

This paper is organized as follows. In section 2, we briefly review some results about passive
scalar transport in turbulent flows. Particular emphasis is put on the Lagrangian description of
scalar transport, pointing out the results which hold for active scalars as well. In section 3, the
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statistics of the (active) temperature and a passive scalar field in 2D convection is discussed.
Section 4 is devoted to the analysis of 2D MHD, with a thorough discussion of the problem of
dissipative anomaly in scalar transport. In section 5, the evolution of passive and active fields in
Ekman–Navier–Stokes turbulence is discussed. In section 6, we study the properties of turbulence
on fluid surfaces under the quasi-geostrophic approximation. In the last section, we summarize
the main findings and delineate the perspectives for active scalar transport.

2. Passive scalar turbulence

2.1. Eulerian approach

The dynamics of passive scalars is governed by the advection–diffusion equation (2). To describe
the general properties of passive scalar evolution in turbulent incompressible velocity fields,
we assume that the velocity field v is scale-invariant and rough. In other words, the spatial
increments δrv = (v(x + r, t) − v(x, t)) · r/r depend on the separation r as a fractional power,
i.e. δrv ∼ rh with h < 1 (e.g. h = 1/3 in Kolmogorov’s 1941 turbulence [18]). Being interested
in the statistically steady properties of the field, we introduce a source of scalar fluctuations fc.
In the following, we take for convenience a random, Gaussian, statistically homogeneous and
isotropic forcing with zero mean and correlation function

〈fc(x1, t)fc(x2, t
′)〉 = δ(t − t′)F(|x1 − x2|/"f ). (5)

The correlation function of the forcing F(r/"f ) is roughly constant at scales smaller than "f ,
which is assumed to be within the scaling range of v, and decreases rapidly to zero for r > "f .

The phenomenology of passive scalar turbulence may be summarized as follows. Scalar
fluctuations injected at the scale "f are transferred towards the small scales with a constant
flux down to the dissipative scale "d . There, the molecular diffusion absorbs the incoming flux
and ensures the equilibrium between the input and the dissipation. The fluctuations are thus
maintained in a statistically steady state, which is characterized by two major properties. First,
the scalar dissipation is asymptotically independent of the molecular diffusivity κ, attaining
a finite non-zero limiting value for κ → 0. This singular behaviour of the dissipation is also
known as dissipative anomaly. Second, in the scaling range "d ' r ' "f , the scalar statistics
is intermittent. This amounts to saying that the small-scale statistics is characterized alternation
between strong, rare events, where scalar increments δrc = c(x + r, t) − c(x, t) are much larger
than their typical value, crms , and long quiescent phases, where δrc ' crms. Intermittency is
reflected by the scaling behaviour of the structure functions, i.e. the moments of the scalar
increments

Sc
N(r) = 〈(δrc)N〉 ∝ rζ

dim
N

(
"f

r

)ζdim
N −ζcN

. (6)

The scaling exponents ζc
N are said to be anomalous when they deviate from the dimensional

expectation ζdim
N = N(1 − h)/2. The equality ζc

N = ζdim
N holds probably only for N = 2 [4],

whereas for N > 2, the deviations become increasingly severe. The asymptotic behaviour at
large orders N corresponds to the saturation ζc

N → ζc
∞ [19]. The saturation is related to the

presence of sharp ‘fronts’ in the scalar field. The exponents ζc
N are universal with respect to

the details of the energy injection statistics. The forcing only affects the numerical prefactors
appearing in the structure functions.
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The anomalous scaling ζdim
N != ζc

N signals the breakdown of scale invariance, as confirmed
by the explicit appearance of "f in (6), even at scales r " "f . Indeed, anomalous scaling of the
moments of scalar increments is equivalent to state that the probability density functions (pdfs)
of δrc at different values of r cannot be collapsed by rescaling them with a unique power law in r.
Even though the specific values of the exponents ζc

N depend on the details of the flow (statistics,
time correlation and roughness exponent h), intermittency and the breaking of scale invariance
in the scalar statistics are generic features of passive scalar turbulence.

The physical mechanism leading to anomalous scaling has been recently understood in the
framework of the Kraichnan model of scalar advection [20, 21] (see [22]–[25] for exhaustive
reviews on the subject). In this model, the advecting flow v is random, Gaussian, self-similar and
δ-correlated in time. Under these special conditions, there exists a closed set of linear equations
for multi-point correlation functions. The anomalous exponents are the scaling exponents of
the homogeneous solutions (the so-called zero modes) of those equations. Since homogeneous
solutions do not depend, by definition, on the scalar input, their scaling exponents are universal
and cannot be inferred from dimensional arguments. The concept of zero mode can be extended
to passive scalar turbulence in generic velocity fields [26].

The properties of passive scalars described above are in the language of fields—the Eulerian
description. It is of interest to adopt now a different, but equivalent viewpoint in terms of particle
trajectories, namely the Lagrangian description.

2.2. Lagrangian description

The basic idea of the Lagrangian approach is to solve equation (2) by the method of characteristics.
Let us denote ρ(s; x, t) as the trajectory of a fluid particle landing at point x at time t (henceforth,
whenever there is no ambiguity, we indicate this as ρ(s)). The path ρ(s) is the solution of the
stochastic differential equation

dρ(s)

ds
= v(ρ(s), s) +

√
2κẇ(s), ρ(t) = x, (7)

where i, j = 1, . . . , d (d being the space dimensionality) and ẇ(s) is a Wiener process (the
derivative of a Brownian motion), i.e. ẇi are Gaussian variables of zero mean and correlation
〈ẇi(s)ẇj(s

′)〉 = δijδ(s − s′). Along the path ρ(s), equation (2) reduces to

dφw(s)

ds
= fc(ρ(s), s), (8)

which is easily solved as φw(t) =
∫ t

0 ds fc(ρ(s), s). For the sake of simplicity, we assumed
φw(0) = 0. We indicated, with φw, the solution obtained along the path ρ obtained for a specific
realization of the process w. The passive scalar field c(x, t) is recovered by averaging over all
the realizations of w, i.e. along all the Lagrangian paths ending in x at time t [27]:

c(x, t) = 〈φw(t)〉w =
〈∫ t

0
ds fc(ρ(s), s)

〉

w

. (9)

The statistic of the trajectories is summarized in the particle propagator P(y, s|x, t) =
〈δ(y − ρ(s; x, t)〉w, which is the probability of finding a particle at point y and time s ! t,
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which is approximately the average time T!f (r) taken by two coinciding particles to reach a
separation r. For a Kolmogorov’s 1941 turbulent flow (h = 1/3), one has Sc

2(r) ∼ r2/3, i.e.
Ec(k) ∼ k−5/3, which is the Oboukov–Corrsin dimensional expectation [4].

The Lagrangian description can be extended also to higher-order statistics as multipoint
correlation functions Cc

N(x1, . . . , xN) = 〈c(x1, t) . . . c(xN, t)〉. However, when many points come
into play, their geometrical arrangement becomes crucial. Dimensional arguments, which are
based on the size of the configuration but forcibly neglect the ‘angular’ information, fall short
of capturing the observed behaviour for multipoint observables. A detailed discussion of their
properties is beyond the scope of this brief review. In the following, we just summarize the main
concepts, referring to [25, 29] for further reading.

Expanding the power in the definition of the structure functions Sc
N(r), it is necessary to

express them as a linear combination of N-point correlation functions (see e.g. (15) for Sc
2(r)).

Therefore, the latter must contain a contribution, denoted as Zc
N(x1, . . . , xN), which carries

the anomalous scale dependence: Zc
N(λx1, . . . , λxN) = λζ

c
NZc

N(x1, . . . , xN) [22]–[24]. From a
Lagrangian viewpoint, the function Zc

N has a special property that distinguishes it from a generic
scaling function. A remarkable finding is that [26, 29]

d
dt

〈Zc
N〉L = 0, (16)

where the derivative d/dt is taken along the trajectories of N particles advected by the flow and
the average is over the ensemble of all trajectories. In other terms, Zc

N is statistically preserved by
the flow [26, 30]. The universality of scaling exponents is then just a by-product of the definition
of statistically preserved structures: since fc does not appear in equation (16), the properties of
zero modes are insensitive to the choice of the forcing.

2.3. Dissipative anomaly

In spite of the continuous injection of scalar through the pumping fc, the second-order moment
〈c2(x, t)〉 does not grow indefinitely even in the limit κ → 0. This is due to the existence of a
finite non-zero limit of the scalar dissipation εc = κ|∇c|2, which is the dissipative anomaly.

To understand how 〈c2(x, t)〉 achieves a finite value independent of the diffusivity coefficient,
we adopt the Lagrangian viewpoint. From equation (13), we have

〈c2(x, t)〉 =
〈∫ t

0

∫ t

0
ds1 ds2fc(ρ(s1; x, t))fc(ρ(s2; x, t))

〉
=

〈 (∫ t

0
dsfc(ρ(s; x, t))

)2 〉
, (17)

where the brackets indicate the average over the scalar forcing, the velocity field and the noise.
Looking naively at equation (17), one might expect that for a large class of random forcing

of zero mean, the r.h.s. of the above expression would grow linearly with t. For instance, when the
forcing is Gaussian and δ-correlated in time, one could argue that equation (17) is essentially the
sum of independent variables and, by central limit theorem arguments, conclude that 〈c2〉 ∝ t.
This conclusion would be correct if, in the limit κ → 0, all trajectories collapse onto a unique
Lagrangian path. This turns out to be the case for strongly compressible flows, but not in general.
For compressible flows, energy indeed grows linearly in time and the advected scalar performs an
inverse cascade process [31, 32]. In contrast, in rough incompressible flows, coinciding particles
typically separate in a finite time, giving rise to multiple paths.As a consequence, a self-averaging

New Journal of Physics 6 (2004) 72 (http://www.njp.org/)

due to delta correlation we may think ⟨c2(x, t)⟩ ∝ t

8 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

process takes place in (17) and this prevents the indefinite growth of the energy. This is evident
when (17) is rewritten as

〈c2(x, t)〉 =
∫ t

0
ds

∫∫
〈P2(y1, y2, s|x, x, t)〉vF(|y1 − y2|/!f ) dy1 dy2. (18)

The time integral is cut off at |t − s| $ T!f , which is four times larger than the (finite) time needed
by two coinciding particles to separate by a distance larger than the forcing correlation length !f .
This is the mechanism leading to finite dissipation of energy. To summarize, the incompressibility
and roughness of the flow result in the dissipative anomaly by explosive separation of the particle
paths. Further discussion on the role of dissipative anomaly in passive scalar turbulence can be
found in [21, 31, 33].

3. 2D turbulent convection

An interesting problem in the context of turbulent transport is the advection of inhomogeneous
temperature fields in a gravitational field. Temperature fluctuations induce density fluctuations,
which in turn, via buoyancy forces, affect the velocity field: hence, the temperature field is an
active scalar [4, 5]. In this paper, we consider 2D convection, which is also of experimental
interest in Hele–Shaw flows [34]. As an additional asset, the 2D problem is better suited for the
study of scaling properties, since it allows us to achieve higher resolution and larger statistics.

2D convection is described by the following equations:

∂ta + v · ∇a = κ$ a + fa, (19)

∂tv + v · ∇v = −∇p + ν$v − βag − αv, (20)

where a is the field of temperature fluctuations. The second equation is the 2D Navier–Stokes
equation, where v is forced by the buoyancy term −βga in the Boussinesq approximation [4];
g = gŷ is acceleration due to gravity and β the thermal expansion coefficient. Kinetic energy is
removed at the large scales by the friction term −αv. The friction is physically due to the drag
experienced by a thin (quasi-2d) layer of fluid with the walls or air [7, 35]; α is related to the
thickness of the fluid layer. A passive scalar c, evolving according to equation (2) in the same
flow, has been considered as well for comparison.

Before looking at the active/passive scalar issue, let us briefly recall the phenomenology
of 2D turbulent convection (for the 3D case, see e.g. [4, 5]). The balance of buoyancy and
inertial terms in equation (20) introduces the Bolgiano length scale !B [4]. At small scales
r % !B, the inertial term is larger than buoyancy forces and the temperature is basically a passive
scalar. At large scales r $ !B, buoyancy dominates and affects the velocity, which performs an
inverse energy cascade in two dimensions. However, at variance with the usual 2D Navier–Stokes
turbulence, the kinetic energy input rate ε depends here on the scale. Dimensional arguments yield
ε(r) = βg · 〈v(x + r, t)a(x, t)〉 ∼ r4/5, the Bolgiano scaling for the velocity structure functions

Sv
N(r) ∼ (ε(r)r)N/3 ∼ rζ

v
N , ζv

N = 3N/5, (21)

and for temperature

Sa
N(r) ∼ rζ

a
N , ζa

N = N/5. (22)
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Sv
N(r) ∼ (ε(r)r)N/3 ∼ rζ

v
N , ζv

N = 3N/5, (21)

and for temperature

Sa
N(r) ∼ rζ

a
N , ζa

N = N/5. (22)
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process takes place in (17) and this prevents the indefinite growth of the energy. This is evident
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∫ t

0
ds
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turbulence, the kinetic energy input rate ε depends here on the scale. Dimensional arguments yield
ε(r) = βg · 〈v(x + r, t)a(x, t)〉 ∼ r4/5, the Bolgiano scaling for the velocity structure functions

Sv
N(r) ∼ (ε(r)r)N/3 ∼ rζ

v
N , ζv

N = 3N/5, (21)

and for temperature

Sa
N(r) ∼ rζ

a
N , ζa

N = N/5. (22)

New Journal of Physics 6 (2004) 72 (http://www.njp.org/)

which is the time for two coinciding paths  
to separate (backward in time) to a distance of order ℓf

non uniqueness  dissipative anomaly→

Explosive separation dissipative anomaly⟹



dissipative anomaly (refined argument)

16 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

where P(y′, s′; y, s|x, t) = P(y, s|x, t)P(y′, s′|y, s) denotes the probability that a trajectory
ending in (x, t) is in (y, s) and (y′, s′). Integration over y and y′ is implied. Equation (31)
amounts to saying that

〈∫ t

0
fa(ρ(s), s) ds

〉2

w

=
〈 [∫ t

0
fa(ρ(s), s) ds

]2 〉

w

, (32)

meaning that
∫ t

0 fa(ρ(s), s) ds is a non-random variable over the ensemble of trajectories. The
above procedure can be generalized to show that 〈

∫ t

0 fa(ρ(s), s) ds〉N
w = 〈[

∫ t

0 fa(ρ(s), s) ds]N〉w.
In plain words, the absence of the dissipative anomaly is equivalent to the property that,

along any of the infinite trajectories ρ(s) ending in (x, t), the quantity
∫ t

0 fa(ρ(s), s) ds is exactly
the same, and equals a(x, t). Therefore, a single trajectory suffices to obtain the value of
a(x, t), contrary to the passive case where different trajectories contribute disparate values of∫ t

0 fc(ρ(s), s) ds, with a typical spread εct, and only the average over all trajectories yields the
correct value of c(x, t). In the unforced case, particles move along isoscalar lines: this is how non-
uniqueness and explosive separation of trajectories are reconciled with the absence of dissipative
anomaly.

Inverse cascades appear also for passive scalars in compressible flows [32]. There, the
ensemble of the trajectories collapses onto a unique path, fulfilling in the simplest way the
constraint (31). In MHD, the constraint is satisfied owing to a subtle correlation between
the forcing and trajectories peculiar to the active case.

MHD in two dimensions represents an ‘extreme’example of the effect of correlations among
Lagrangian paths and the active scalar input. The property that all trajectories ending in the same
point should contribute the same value of the input poses a global constraint over the possible
paths.

Before discussing the statistical properties of a, on the basis of the previous discussion, it
is instructive to reconsider the concept of dissipative anomaly in general scalar turbulence.

4.3. Dissipative anomaly revisited

In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
denote by "(x, t) a generic scalar field, regardless of its passive or active character. The scalar
evolves according to the transport equation

∂t" + v · ∇" = κ%" + f". (33)

We can formally solve equation (33) by the method of characteristics, i.e. in terms of the stochastic
ordinary differential equations

dρ(t)

dt
= v(ρ(t), t) +

√
2κẇ, (34)

dϑ(t)
dt

= f"(ρ(t), t). (35)

Here, we are not conditioning a priori the paths to their final positions in contrast with the
procedure adopted in section 2.2. The Eulerian value of the field is recovered once the average
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and averaging over those landing in x,t we have
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].

New Journal of Physics 6 (2004) 72 (http://www.njp.org/)



dissipative anomaly (refined argument)

16 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

where P(y′, s′; y, s|x, t) = P(y, s|x, t)P(y′, s′|y, s) denotes the probability that a trajectory
ending in (x, t) is in (y, s) and (y′, s′). Integration over y and y′ is implied. Equation (31)
amounts to saying that

〈∫ t

0
fa(ρ(s), s) ds

〉2

w

=
〈 [∫ t

0
fa(ρ(s), s) ds

]2 〉

w

, (32)

meaning that
∫ t

0 fa(ρ(s), s) ds is a non-random variable over the ensemble of trajectories. The
above procedure can be generalized to show that 〈

∫ t

0 fa(ρ(s), s) ds〉N
w = 〈[

∫ t

0 fa(ρ(s), s) ds]N〉w.
In plain words, the absence of the dissipative anomaly is equivalent to the property that,

along any of the infinite trajectories ρ(s) ending in (x, t), the quantity
∫ t

0 fa(ρ(s), s) ds is exactly
the same, and equals a(x, t). Therefore, a single trajectory suffices to obtain the value of
a(x, t), contrary to the passive case where different trajectories contribute disparate values of∫ t

0 fc(ρ(s), s) ds, with a typical spread εct, and only the average over all trajectories yields the
correct value of c(x, t). In the unforced case, particles move along isoscalar lines: this is how non-
uniqueness and explosive separation of trajectories are reconciled with the absence of dissipative
anomaly.

Inverse cascades appear also for passive scalars in compressible flows [32]. There, the
ensemble of the trajectories collapses onto a unique path, fulfilling in the simplest way the
constraint (31). In MHD, the constraint is satisfied owing to a subtle correlation between
the forcing and trajectories peculiar to the active case.

MHD in two dimensions represents an ‘extreme’example of the effect of correlations among
Lagrangian paths and the active scalar input. The property that all trajectories ending in the same
point should contribute the same value of the input poses a global constraint over the possible
paths.

Before discussing the statistical properties of a, on the basis of the previous discussion, it
is instructive to reconsider the concept of dissipative anomaly in general scalar turbulence.

4.3. Dissipative anomaly revisited

In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
denote by "(x, t) a generic scalar field, regardless of its passive or active character. The scalar
evolves according to the transport equation

∂t" + v · ∇" = κ%" + f". (33)

We can formally solve equation (33) by the method of characteristics, i.e. in terms of the stochastic
ordinary differential equations

dρ(t)

dt
= v(ρ(t), t) +

√
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where P(y′, s′; y, s|x, t) = P(y, s|x, t)P(y′, s′|y, s) denotes the probability that a trajectory
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〈∫ t
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〉2

w
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〈 [∫ t

0
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]2 〉

w

, (32)

meaning that
∫ t

0 fa(ρ(s), s) ds is a non-random variable over the ensemble of trajectories. The
above procedure can be generalized to show that 〈

∫ t

0 fa(ρ(s), s) ds〉N
w = 〈[

∫ t

0 fa(ρ(s), s) ds]N〉w.
In plain words, the absence of the dissipative anomaly is equivalent to the property that,

along any of the infinite trajectories ρ(s) ending in (x, t), the quantity
∫ t

0 fa(ρ(s), s) ds is exactly
the same, and equals a(x, t). Therefore, a single trajectory suffices to obtain the value of
a(x, t), contrary to the passive case where different trajectories contribute disparate values of∫ t

0 fc(ρ(s), s) ds, with a typical spread εct, and only the average over all trajectories yields the
correct value of c(x, t). In the unforced case, particles move along isoscalar lines: this is how non-
uniqueness and explosive separation of trajectories are reconciled with the absence of dissipative
anomaly.

Inverse cascades appear also for passive scalars in compressible flows [32]. There, the
ensemble of the trajectories collapses onto a unique path, fulfilling in the simplest way the
constraint (31). In MHD, the constraint is satisfied owing to a subtle correlation between
the forcing and trajectories peculiar to the active case.

MHD in two dimensions represents an ‘extreme’example of the effect of correlations among
Lagrangian paths and the active scalar input. The property that all trajectories ending in the same
point should contribute the same value of the input poses a global constraint over the possible
paths.

Before discussing the statistical properties of a, on the basis of the previous discussion, it
is instructive to reconsider the concept of dissipative anomaly in general scalar turbulence.

4.3. Dissipative anomaly revisited

In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
denote by "(x, t) a generic scalar field, regardless of its passive or active character. The scalar
evolves according to the transport equation

∂t" + v · ∇" = κ%" + f". (33)

We can formally solve equation (33) by the method of characteristics, i.e. in terms of the stochastic
ordinary differential equations

dρ(t)

dt
= v(ρ(t), t) +

√
2κẇ, (34)

dϑ(t)
dt

= f"(ρ(t), t). (35)

Here, we are not conditioning a priori the paths to their final positions in contrast with the
procedure adopted in section 2.2. The Eulerian value of the field is recovered once the average
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
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function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =
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0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
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!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
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dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2
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ϑ2P dϑ −
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∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:
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!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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where P(y′, s′; y, s|x, t) = P(y, s|x, t)P(y′, s′|y, s) denotes the probability that a trajectory
ending in (x, t) is in (y, s) and (y′, s′). Integration over y and y′ is implied. Equation (31)
amounts to saying that

〈∫ t

0
fa(ρ(s), s) ds

〉2

w

=
〈 [∫ t

0
fa(ρ(s), s) ds

]2 〉

w

, (32)

meaning that
∫ t

0 fa(ρ(s), s) ds is a non-random variable over the ensemble of trajectories. The
above procedure can be generalized to show that 〈

∫ t

0 fa(ρ(s), s) ds〉N
w = 〈[

∫ t

0 fa(ρ(s), s) ds]N〉w.
In plain words, the absence of the dissipative anomaly is equivalent to the property that,

along any of the infinite trajectories ρ(s) ending in (x, t), the quantity
∫ t

0 fa(ρ(s), s) ds is exactly
the same, and equals a(x, t). Therefore, a single trajectory suffices to obtain the value of
a(x, t), contrary to the passive case where different trajectories contribute disparate values of∫ t

0 fc(ρ(s), s) ds, with a typical spread εct, and only the average over all trajectories yields the
correct value of c(x, t). In the unforced case, particles move along isoscalar lines: this is how non-
uniqueness and explosive separation of trajectories are reconciled with the absence of dissipative
anomaly.

Inverse cascades appear also for passive scalars in compressible flows [32]. There, the
ensemble of the trajectories collapses onto a unique path, fulfilling in the simplest way the
constraint (31). In MHD, the constraint is satisfied owing to a subtle correlation between
the forcing and trajectories peculiar to the active case.

MHD in two dimensions represents an ‘extreme’example of the effect of correlations among
Lagrangian paths and the active scalar input. The property that all trajectories ending in the same
point should contribute the same value of the input poses a global constraint over the possible
paths.

Before discussing the statistical properties of a, on the basis of the previous discussion, it
is instructive to reconsider the concept of dissipative anomaly in general scalar turbulence.

4.3. Dissipative anomaly revisited

In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
denote by "(x, t) a generic scalar field, regardless of its passive or active character. The scalar
evolves according to the transport equation

∂t" + v · ∇" = κ%" + f". (33)

We can formally solve equation (33) by the method of characteristics, i.e. in terms of the stochastic
ordinary differential equations

dρ(t)

dt
= v(ρ(t), t) +

√
2κẇ, (34)

dϑ(t)
dt

= f"(ρ(t), t). (35)

Here, we are not conditioning a priori the paths to their final positions in contrast with the
procedure adopted in section 2.2. The Eulerian value of the field is recovered once the average
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In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
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evolves according to the transport equation

∂t" + v · ∇" = κ%" + f". (33)
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dt
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√
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dt
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Here, we are not conditioning a priori the paths to their final positions in contrast with the
procedure adopted in section 2.2. The Eulerian value of the field is recovered once the average
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
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propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
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4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
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and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].

New Journal of Physics 6 (2004) 72 (http://www.njp.org/)

Be                                              the  prob to start in  with  and to land in x at time t carrying a scalar value    x0 ϑ0 = Θ(x0,0) ϑ

17 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)
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function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.
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!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
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towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
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!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).
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dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics
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do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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where P(y′, s′; y, s|x, t) = P(y, s|x, t)P(y′, s′|y, s) denotes the probability that a trajectory
ending in (x, t) is in (y, s) and (y′, s′). Integration over y and y′ is implied. Equation (31)
amounts to saying that

〈∫ t

0
fa(ρ(s), s) ds

〉2

w

=
〈 [∫ t

0
fa(ρ(s), s) ds

]2 〉

w

, (32)

meaning that
∫ t

0 fa(ρ(s), s) ds is a non-random variable over the ensemble of trajectories. The
above procedure can be generalized to show that 〈

∫ t

0 fa(ρ(s), s) ds〉N
w = 〈[

∫ t

0 fa(ρ(s), s) ds]N〉w.
In plain words, the absence of the dissipative anomaly is equivalent to the property that,

along any of the infinite trajectories ρ(s) ending in (x, t), the quantity
∫ t

0 fa(ρ(s), s) ds is exactly
the same, and equals a(x, t). Therefore, a single trajectory suffices to obtain the value of
a(x, t), contrary to the passive case where different trajectories contribute disparate values of∫ t

0 fc(ρ(s), s) ds, with a typical spread εct, and only the average over all trajectories yields the
correct value of c(x, t). In the unforced case, particles move along isoscalar lines: this is how non-
uniqueness and explosive separation of trajectories are reconciled with the absence of dissipative
anomaly.

Inverse cascades appear also for passive scalars in compressible flows [32]. There, the
ensemble of the trajectories collapses onto a unique path, fulfilling in the simplest way the
constraint (31). In MHD, the constraint is satisfied owing to a subtle correlation between
the forcing and trajectories peculiar to the active case.

MHD in two dimensions represents an ‘extreme’example of the effect of correlations among
Lagrangian paths and the active scalar input. The property that all trajectories ending in the same
point should contribute the same value of the input poses a global constraint over the possible
paths.

Before discussing the statistical properties of a, on the basis of the previous discussion, it
is instructive to reconsider the concept of dissipative anomaly in general scalar turbulence.

4.3. Dissipative anomaly revisited

In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
denote by "(x, t) a generic scalar field, regardless of its passive or active character. The scalar
evolves according to the transport equation

∂t" + v · ∇" = κ%" + f". (33)

We can formally solve equation (33) by the method of characteristics, i.e. in terms of the stochastic
ordinary differential equations

dρ(t)

dt
= v(ρ(t), t) +

√
2κẇ, (34)

dϑ(t)
dt

= f"(ρ(t), t). (35)

Here, we are not conditioning a priori the paths to their final positions in contrast with the
procedure adopted in section 2.2. The Eulerian value of the field is recovered once the average
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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above findings.
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function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
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P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
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!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
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and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].

New Journal of Physics 6 (2004) 72 (http://www.njp.org/)

17 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
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function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
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function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
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where P(y′, s′; y, s|x, t) = P(y, s|x, t)P(y′, s′|y, s) denotes the probability that a trajectory
ending in (x, t) is in (y, s) and (y′, s′). Integration over y and y′ is implied. Equation (31)
amounts to saying that

〈∫ t

0
fa(ρ(s), s) ds

〉2

w

=
〈 [∫ t

0
fa(ρ(s), s) ds

]2 〉

w

, (32)

meaning that
∫ t

0 fa(ρ(s), s) ds is a non-random variable over the ensemble of trajectories. The
above procedure can be generalized to show that 〈

∫ t

0 fa(ρ(s), s) ds〉N
w = 〈[

∫ t

0 fa(ρ(s), s) ds]N〉w.
In plain words, the absence of the dissipative anomaly is equivalent to the property that,

along any of the infinite trajectories ρ(s) ending in (x, t), the quantity
∫ t

0 fa(ρ(s), s) ds is exactly
the same, and equals a(x, t). Therefore, a single trajectory suffices to obtain the value of
a(x, t), contrary to the passive case where different trajectories contribute disparate values of∫ t

0 fc(ρ(s), s) ds, with a typical spread εct, and only the average over all trajectories yields the
correct value of c(x, t). In the unforced case, particles move along isoscalar lines: this is how non-
uniqueness and explosive separation of trajectories are reconciled with the absence of dissipative
anomaly.

Inverse cascades appear also for passive scalars in compressible flows [32]. There, the
ensemble of the trajectories collapses onto a unique path, fulfilling in the simplest way the
constraint (31). In MHD, the constraint is satisfied owing to a subtle correlation between
the forcing and trajectories peculiar to the active case.

MHD in two dimensions represents an ‘extreme’example of the effect of correlations among
Lagrangian paths and the active scalar input. The property that all trajectories ending in the same
point should contribute the same value of the input poses a global constraint over the possible
paths.

Before discussing the statistical properties of a, on the basis of the previous discussion, it
is instructive to reconsider the concept of dissipative anomaly in general scalar turbulence.

4.3. Dissipative anomaly revisited

In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
denote by "(x, t) a generic scalar field, regardless of its passive or active character. The scalar
evolves according to the transport equation

∂t" + v · ∇" = κ%" + f". (33)

We can formally solve equation (33) by the method of characteristics, i.e. in terms of the stochastic
ordinary differential equations

dρ(t)

dt
= v(ρ(t), t) +

√
2κẇ, (34)

dϑ(t)
dt

= f"(ρ(t), t). (35)

Here, we are not conditioning a priori the paths to their final positions in contrast with the
procedure adopted in section 2.2. The Eulerian value of the field is recovered once the average
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
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ϑP dϑ)2. From equation (36), it is easy to derive the following equation:
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∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt
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∫
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where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).
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dx σ2
a,c(x, t) for 2d MHD, which confirms the
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function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
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The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
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0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
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!(x, t) = 0, corresponding
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a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.
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with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫
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!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
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∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =
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towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =
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0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =
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above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
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not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.
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∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)
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!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
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The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt
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σ2
!(x, t) dx = 2

∫
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where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
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0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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where P(y′, s′; y, s|x, t) = P(y, s|x, t)P(y′, s′|y, s) denotes the probability that a trajectory
ending in (x, t) is in (y, s) and (y′, s′). Integration over y and y′ is implied. Equation (31)
amounts to saying that

〈∫ t

0
fa(ρ(s), s) ds

〉2

w

=
〈 [∫ t

0
fa(ρ(s), s) ds

]2 〉

w

, (32)

meaning that
∫ t

0 fa(ρ(s), s) ds is a non-random variable over the ensemble of trajectories. The
above procedure can be generalized to show that 〈

∫ t

0 fa(ρ(s), s) ds〉N
w = 〈[

∫ t

0 fa(ρ(s), s) ds]N〉w.
In plain words, the absence of the dissipative anomaly is equivalent to the property that,

along any of the infinite trajectories ρ(s) ending in (x, t), the quantity
∫ t

0 fa(ρ(s), s) ds is exactly
the same, and equals a(x, t). Therefore, a single trajectory suffices to obtain the value of
a(x, t), contrary to the passive case where different trajectories contribute disparate values of∫ t

0 fc(ρ(s), s) ds, with a typical spread εct, and only the average over all trajectories yields the
correct value of c(x, t). In the unforced case, particles move along isoscalar lines: this is how non-
uniqueness and explosive separation of trajectories are reconciled with the absence of dissipative
anomaly.

Inverse cascades appear also for passive scalars in compressible flows [32]. There, the
ensemble of the trajectories collapses onto a unique path, fulfilling in the simplest way the
constraint (31). In MHD, the constraint is satisfied owing to a subtle correlation between
the forcing and trajectories peculiar to the active case.

MHD in two dimensions represents an ‘extreme’example of the effect of correlations among
Lagrangian paths and the active scalar input. The property that all trajectories ending in the same
point should contribute the same value of the input poses a global constraint over the possible
paths.

Before discussing the statistical properties of a, on the basis of the previous discussion, it
is instructive to reconsider the concept of dissipative anomaly in general scalar turbulence.

4.3. Dissipative anomaly revisited

In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
denote by "(x, t) a generic scalar field, regardless of its passive or active character. The scalar
evolves according to the transport equation

∂t" + v · ∇" = κ%" + f". (33)

We can formally solve equation (33) by the method of characteristics, i.e. in terms of the stochastic
ordinary differential equations

dρ(t)

dt
= v(ρ(t), t) +

√
2κẇ, (34)

dϑ(t)
dt

= f"(ρ(t), t). (35)

Here, we are not conditioning a priori the paths to their final positions in contrast with the
procedure adopted in section 2.2. The Eulerian value of the field is recovered once the average
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
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0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,
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dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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where P(y′, s′; y, s|x, t) = P(y, s|x, t)P(y′, s′|y, s) denotes the probability that a trajectory
ending in (x, t) is in (y, s) and (y′, s′). Integration over y and y′ is implied. Equation (31)
amounts to saying that

〈∫ t

0
fa(ρ(s), s) ds

〉2

w

=
〈 [∫ t

0
fa(ρ(s), s) ds

]2 〉

w

, (32)

meaning that
∫ t

0 fa(ρ(s), s) ds is a non-random variable over the ensemble of trajectories. The
above procedure can be generalized to show that 〈

∫ t

0 fa(ρ(s), s) ds〉N
w = 〈[

∫ t

0 fa(ρ(s), s) ds]N〉w.
In plain words, the absence of the dissipative anomaly is equivalent to the property that,

along any of the infinite trajectories ρ(s) ending in (x, t), the quantity
∫ t

0 fa(ρ(s), s) ds is exactly
the same, and equals a(x, t). Therefore, a single trajectory suffices to obtain the value of
a(x, t), contrary to the passive case where different trajectories contribute disparate values of∫ t

0 fc(ρ(s), s) ds, with a typical spread εct, and only the average over all trajectories yields the
correct value of c(x, t). In the unforced case, particles move along isoscalar lines: this is how non-
uniqueness and explosive separation of trajectories are reconciled with the absence of dissipative
anomaly.

Inverse cascades appear also for passive scalars in compressible flows [32]. There, the
ensemble of the trajectories collapses onto a unique path, fulfilling in the simplest way the
constraint (31). In MHD, the constraint is satisfied owing to a subtle correlation between
the forcing and trajectories peculiar to the active case.

MHD in two dimensions represents an ‘extreme’example of the effect of correlations among
Lagrangian paths and the active scalar input. The property that all trajectories ending in the same
point should contribute the same value of the input poses a global constraint over the possible
paths.

Before discussing the statistical properties of a, on the basis of the previous discussion, it
is instructive to reconsider the concept of dissipative anomaly in general scalar turbulence.

4.3. Dissipative anomaly revisited

In this subsection, we give an alternative interpretation of dissipative anomaly. To this aim, let us
denote by "(x, t) a generic scalar field, regardless of its passive or active character. The scalar
evolves according to the transport equation

∂t" + v · ∇" = κ%" + f". (33)

We can formally solve equation (33) by the method of characteristics, i.e. in terms of the stochastic
ordinary differential equations

dρ(t)

dt
= v(ρ(t), t) +

√
2κẇ, (34)

dϑ(t)
dt

= f"(ρ(t), t). (35)

Here, we are not conditioning a priori the paths to their final positions in contrast with the
procedure adopted in section 2.2. The Eulerian value of the field is recovered once the average
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).

4.4. Eulerian statistics

4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
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ϑP dϑ)2. From equation (36), it is easy to derive the following equation:
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ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =
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dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].

New Journal of Physics 6 (2004) 72 (http://www.njp.org/)

=0

17 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
non-Lipschitz-continuous, such paths do not collapse onto a single one for κ → 0 as well.

We can now define P(x,ϑ, t|x0,ϑ0, 0) as the probability that a path that started in x0 at time
0 with ϑ0 = !(x0, 0) arrives in x at time t carrying a scalar value ϑ. Notice that the conditioning
is now on the initial value, and P evolves according to the Kolmogorov equation

∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
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function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
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propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
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In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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4.4.1. Single-point statistics. The statistical properties of the magnetic potential a and the
passive scalar c are markedly different already at the level of single-point statistics. The pdf of
a is Gaussian, with zero mean and variance F0t (figure 9). Conversely, the pdf of c is stationary
and super-Gaussian (see figure 9), as it generically happens for passive fields sustained by a
Gaussian forcing in rough flows [25].
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over all paths ρ landing in (x, t) is performed, i.e. !(x, t) = 〈ϑ(t)〉w. Recall that if the flow is
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∂tP + v · ∇xP + f!∇ϑP = κ%P, (36)

with initial condition P(x,ϑ, t|x0,ϑ0, 0) = δ(x − x0)δ(ϑ − ϑ0) and ϑ0 = !(x, 0).
Integrating over the initial conditions, we define now the probability density P(x,ϑ, t) =∫

P(x,ϑ, t|x0,!(x0, 0), 0) dx0. P still obeys (36) with initial condition P(x,ϑ, 0) = δ(ϑ −
!(x0, 0)), and represents the probability that a path arrives in (x, t) carrying a scalar value
ϑ(t) =

∫ t

0 f!(ρ(s), s) ds.
Let us now look at the variance of the distribution of such values, i.e. σ2

!(x, t) =
∫
ϑ2P dϑ −

(
∫
ϑP dϑ)2. From equation (36), it is easy to derive the following equation:

∂tσ
2
!(x, t) + v · ∇xσ

2
!(x, t) = κ%σ2

!(x, t) + 2ε!(x, t), (37)

where ε!(x, t) = κ|∇x

∫
ϑP(x,ϑ, t) dϑ|2. In the Eulerian frame, note that ε!(x, t) =

κ|∇!(x, t)|2, i.e. the local dissipation field.
Integrating over x, we end up with

d
dt

∫
σ2
!(x, t) dx = 2

∫
ε!(x, t) dx = 2ε!, (38)

where ε! = 〈κ|∇!(x, t)|2〉 is the average dissipation rate of 〈!2〉/2. Therefore, if !2 cascades
towards the small scales with a finite (even in the limit κ → 0) dissipation ε!, the variance of the
distribution of values of ϑ(t) =

∫ t

0 ds f!(ρ(s), s) will grow linearly in time. Conversely, for an
inverse cascade of !2 in the absence of dissipative anomaly,

∫
dx σ2

!(x, t) = 0, corresponding
to a singular distribution P(x,ϑ, t) = δ(ϑ −!(x, t)).

In figure 7, we show the time evolution of
∫

dx σ2
a,c(x, t) for 2d MHD, which confirms the

above findings.
The fact that, for inverse cascading scalars, the probability density P collapses onto a δ-

function in the limit of vanishing diffusivity amounts to saying that particles in the (x,ϑ) space
do not disperse in the ϑ-direction, but move while remaining attached to the surface ϑ = !(x, t)
(see figure 8(a)). This is related to the strong spatial correlations between a and the Lagrangian
propagator observed in figure 5. In contrast, for a direct cascade of scalar, such correlations do
not exist and dissipation takes place because of dispersion in the ϑ-direction (see figure 8(b)).
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Figure 7. Plot of
∫

dx σ2
a(x, t) and

∫
dx σ2

c (x, t) (!" and ◦ respectively) versus
time. We have integrated equations (25) and (2) for two different values of
diffusivity, κ = 0.003 ( •) at resolution 5122 and κ = 0.001 (◦ !") at resolution
10242. The straight lines indicate the growth laws 2εat and 2εct for the two
values of κ. Note that εc does not depend on κ consistently in the presence
of dissipative anomaly, whereas εa decreases as κ decreases. The variance has
been evaluated averaging over 106 Lagrangian paths evolving according to (34).
The Lagrangian scalar values ϑa and ϑc (where a(x, t) =

∫
ϑaP(x,ϑa, t) dϑa, the

equivalent relation holds between c and ϑc) have been computed integrating (35)
both for the active fa and passive fc forcings along each path. The forcings are
chosen as in (27). The initial Eulerian a(x, 0), c(x, 0) and Lagrangianϑa(0),ϑc(0)
fields have been set to zero. Time is measured in eddy turnover times.

The Gaussianity of the pdf of a is a straightforward consequence of the vanishing of
active scalar dissipation. This is simply derived by multiplying equation (25) for 2na2n−1 and
averaging over the forcing statistics. The active scalar moments obey the equation ∂t〈a2n〉 =
n(2n − 1)F0〈a2n−2〉 (odd moments vanish by symmetry), whose solutions are the Gaussian
moments: 〈a2n〉 = (2n − 1)!!(F0t)

n. An equivalent derivation can be obtained in Lagrangian
terms. Following the same steps that lead from equation (30) to (31), it is easy to derive the
following expression:

a2n(x, t) = 2n

∫ t

0
ds1

∫
dy1P(y1, s1|x, t)f&(y1, s1)a

2n−1(y1, s1), (39)

which, after integrating over x and averaging over the forcing statistics, reduces to

〈a2n〉(t) = n(2n − 1)F0

∫ t

0
ds〈a2n−2〉(s), (40)

which, unravelling the hierarchy, yields the Gaussian moments written above. In passing from
equation (39) to (40), we used the property that

∫
dx P(y, s|x, t) = 1 (which is ensured by

equation (10)) and Gaussian integration by parts.

New Journal of Physics 6 (2004) 72 (http://www.njp.org/)

11 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

also exist for the (active) temperature. Pursuing this line of thought, one may be tempted to
define them through the property (d/dt)〈Za

N〉L = 0 as for passive scalars (see equation (16)).
However, statistically preserved structures are determined by the statistics of particle trajectories,
which, through the feedback of a on v, depend on fa. Therefore, the above definition does not
automatically imply the universality of Za

N , because Lagrangian paths depend on fa. Nonetheless,
the observed universality of the statistics of v is sufficient to guarantee universality of the
trajectories statistics, leading to the conclusion that if Za

N exists, it might be universal. Since
Zc

N are also defined by the Lagrangian statistics, which is the same for a and c, we may further
conjecture that Za

N = Zc
N . This would explain the equality of scaling exponents, ζa

N = ζc
N .

It has to be remarked that this picture is probably not generic. Two crucial points are needed
to have the equality between active and passive scalar exponents: (i) the velocity statistics should
be universal; and (ii) the correlation between fa and the particle paths should be negligible. As
we shall see in the following, those two requirements are not generally met.

4. 2D MHD

4.1. Direct and inverse cascades

MHD models are extensively used in the study of magnetic fusion devices, industrial processing
plasmas and ionospheric/astrophysical plasmas [3]. MHD is the extension of hydrodynamics to
conductive fluids, including the effects of electromagnetic fields. When the magnetic field b has
a strong large-scale component in one direction, the dynamics is adequately described by the 2D
MHD equations [6]. Since the magnetic field b(x, t) is solenoidal, in 2d, it can be represented
in terms of the magnetic scalar potential a(x, t), i.e. b = −∇⊥a = (−∂2a, ∂1a). The magnetic
potential evolves according to the advection–diffusion equation

∂ta + v · ∇a = κ$ a + fa, (25)

and will be our active scalar throughout this section. The advecting velocity field is driven by
the Lorentz force (∇ × b) × b = −$a∇a, so that the Navier–Stokes equation becomes

∂tv + v · ∇v = −∇p + ν$v −$a∇a. (26)

The question is whether the picture drawn for the temperature field in 2d convection applies to
the magnetic potential as well.

Equations (25) and (26) have two quadratic invariants in the inviscid and unforced limit,
namely the total energy 1

2

∫
(v2 + b2) dx and the mean square magnetic potential 1

2

∫
a2 dx.

Using standard quasi-equilibrium arguments [6], an inverse cascade of the magnetic potential is
expected to take place in the forced and dissipated case [43]. This expectation has been confirmed
in numerical experiments [44]. Let us now compare the magnetic potential with a passive scalar
evolving in the same flow.

We performed a high-resolution (40962 collocation points) direct numerical simulation of
equations (25) and (26) along with a passive scalar (2). The scalar forcing terms fa and fc are
homogeneous, independent Gaussian processes with zero mean and correlation

〈f̂ i(k, t)f̂ j(k
′, t′)〉 = F0

(2πkf )
δijδ(k + k′)δ(k − kf )δ(t − t′), (27)

New Journal of Physics 6 (2004) 72 (http://www.njp.org/)

11 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

also exist for the (active) temperature. Pursuing this line of thought, one may be tempted to
define them through the property (d/dt)〈Za

N〉L = 0 as for passive scalars (see equation (16)).
However, statistically preserved structures are determined by the statistics of particle trajectories,
which, through the feedback of a on v, depend on fa. Therefore, the above definition does not
automatically imply the universality of Za

N , because Lagrangian paths depend on fa. Nonetheless,
the observed universality of the statistics of v is sufficient to guarantee universality of the
trajectories statistics, leading to the conclusion that if Za

N exists, it might be universal. Since
Zc

N are also defined by the Lagrangian statistics, which is the same for a and c, we may further
conjecture that Za

N = Zc
N . This would explain the equality of scaling exponents, ζa

N = ζc
N .

It has to be remarked that this picture is probably not generic. Two crucial points are needed
to have the equality between active and passive scalar exponents: (i) the velocity statistics should
be universal; and (ii) the correlation between fa and the particle paths should be negligible. As
we shall see in the following, those two requirements are not generally met.

4. 2D MHD

4.1. Direct and inverse cascades

MHD models are extensively used in the study of magnetic fusion devices, industrial processing
plasmas and ionospheric/astrophysical plasmas [3]. MHD is the extension of hydrodynamics to
conductive fluids, including the effects of electromagnetic fields. When the magnetic field b has
a strong large-scale component in one direction, the dynamics is adequately described by the 2D
MHD equations [6]. Since the magnetic field b(x, t) is solenoidal, in 2d, it can be represented
in terms of the magnetic scalar potential a(x, t), i.e. b = −∇⊥a = (−∂2a, ∂1a). The magnetic
potential evolves according to the advection–diffusion equation

∂ta + v · ∇a = κ$ a + fa, (25)

and will be our active scalar throughout this section. The advecting velocity field is driven by
the Lorentz force (∇ × b) × b = −$a∇a, so that the Navier–Stokes equation becomes

∂tv + v · ∇v = −∇p + ν$v −$a∇a. (26)

The question is whether the picture drawn for the temperature field in 2d convection applies to
the magnetic potential as well.

Equations (25) and (26) have two quadratic invariants in the inviscid and unforced limit,
namely the total energy 1

2

∫
(v2 + b2) dx and the mean square magnetic potential 1

2

∫
a2 dx.

Using standard quasi-equilibrium arguments [6], an inverse cascade of the magnetic potential is
expected to take place in the forced and dissipated case [43]. This expectation has been confirmed
in numerical experiments [44]. Let us now compare the magnetic potential with a passive scalar
evolving in the same flow.

We performed a high-resolution (40962 collocation points) direct numerical simulation of
equations (25) and (26) along with a passive scalar (2). The scalar forcing terms fa and fc are
homogeneous, independent Gaussian processes with zero mean and correlation

〈f̂ i(k, t)f̂ j(k
′, t′)〉 = F0

(2πkf )
δijδ(k + k′)δ(k − kf )δ(t − t′), (27)

New Journal of Physics 6 (2004) 72 (http://www.njp.org/)

3 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

the passive scalar scaling laws are universal with respect to the injection mechanism. On the
contrary, for active fields, the presence of the feedback couples the velocity with the transported
scalar and makes the problem fully nonlinear. In this case, the theoretical tools developed for
studying the passive problem may fall short of explaining the behaviour of active scalars, and the
current understanding of active turbulent transport lags far behind the knowledge accumulated
on the passive counterpart. This state of the art motivated us to pursue a ‘case study’ on turbulent
transport of active and passive scalars using the scaling properties of fields evolving in the same
turbulent flow as the basic diagnostics for comparison.

We consider four different systems belonging to the following general classes of problems:
(i) active scalars that influence the flow through local forces; and (ii) active fields functionally
related to the velocity.

The evolution of a scalar belonging to the first class is described in terms of the following
set of equations:

∂ta + v · ∇a = κ# a + fa, (1)

∂tc + v · ∇c = κ# c + fc, (2)

∂tv + v · ∇v = −∇p + ν#v + F [a, ∇a, . . . ], (3)

where a and c are the active and passive scalar fields, respectively, and obey the advection–
diffusion equations (1) and (2). The scalar inputs fa and fc have a characteristic lengthscale %f ,
and represent two different realizations of the same stochastic process. Were they coincident,
no difference between active and passive fields would persist. For the sake of simplicity, we
use the same molecular diffusivity κ for both scalars. The active character of a is embodied
by the term F [a, ∇a, . . . ], which acts as a forcing for the velocity field in the Navier–Stokes
equations. The specific form of the term F depends on the physical system under investigation.
In the following, we shall consider two examples from this class: thermal convection [4, 5],
where a is the temperature field and F = −βag the buoyancy force, and two-dimensional
(2D) magnetohydrodynamics (MHD) [6], where a the magnetic potential and F = −#a∇a
the Lorentz force.

The second class of active scalars is relevant to geophysical flows [7, 8]. In this case, the
dynamics is described in terms of a scalar field obeying the advection–diffusion equation (1),
supplemented by a functional relation that gives v in terms of a:

vi(x, t) =
∫
'i(x − y)a(y, t) dy. (4)

Here, the vector-valued kernel ! is divergence-free. A well-known instance from such a class is
the 2D Navier–Stokes equation, where the active scalar is the vorticity ∇ × v. Another problem
which we shall discuss is the turbulent flow on the flat surface of an infinitely high fluid, described
by the surface-quasi-geostrophic equation [9, 10]. Here, the active scalar is the fluid density, which
is related (e.g. for ideal gases) to the so-called potential temperature.

Some of the results presented in this paper were discussed previously in [11]–[13]. Related
investigations on active and passive transports may be found in [14]–[17].

This paper is organized as follows. In section 2, we briefly review some results about passive
scalar transport in turbulent flows. Particular emphasis is put on the Lagrangian description of
scalar transport, pointing out the results which hold for active scalars as well. In section 3, the
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I. NOTES ON LAGRANGIAN VIEW OF SCALAR TURBULENCE

@t✓ + v ·r✓ = �✓ + F (1)

Assumption: incompressibility ! r · v = 0

Assumption: ! Time uncorrelated, Gaussian Forcing

hF (x, t)F (y, t0)iF = �(t� t0)�(|x� y|) (2)

Eq. (1) is equivalent to the SDE:

ẏ(s) = v(y(s), s) +
p
2⌘(s) h⌘(t)⌘(t0)i = �(t� t0) (3)

�̇(s) = F (y(s), s) (4)

Assuming ✓(x,�1) = 0 we have that (the lower bound to �1 is implicit) It is easily proven that

✓(x, t) = h�i⌘|y(t)=x =

Z t

dshF (y(s;x, t), s)i⌘ (5)

Which, by introducing pv(y, s|x, t) = h�(y � y(s;x, t)i⌘ the Lagrangian propagator pv(y, t|x, t) = �(x � y) (notice
that it depends on the velocity!), can be rewritten as

✓(x, t) =

Z t

ds

Z
dypv(y, s|x, t)F (y, s) (6)

To prove that this solves the scalar transport equation (1) use

@tpv(y, s|x, t) = �v ·rpv(y, s|x, t) + �pv(y, s|x, t) (7)

II. MULTIPOINT CORRELATION FUNCTIONS

In principle, we are interested in understanding the scaling behavior of structure functions, i.e.

SN (r) = h(✓(x+ r, t)� ✓(x, t))N iv,F (8)

However, SN can be rewritten as:

SN (r) = h(✓(x+r, t)�✓(x, t))N iv,F = h
✓Z 1

0
@s✓(x+ sr)ds

◆N

iv,F =

Z 1

0
ds1 . . .

Z 1

0
dsN@s1 . . . @sNCN (x+s1r, . . . ,x+sNr)

(9)
and so can be expressed as combination of multipoint correlation function, i.e.

CN (x1,x2, . . . ,xN ) = h✓(x1, t)✓(x2, t) . . . ✓(xN , t)iv,F

It is thus more general to study such multipoint correlation functions.
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and so can be expressed as combination of multipoint correlation function. It is thus more general to study such
multipoint correlation functions.
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However, SN can be rewritten as:

SN (r) = h(✓(x+r, t)�✓(x, t))N iv,F = h
✓Z 1

0
@s✓(x+ sr)ds

◆N

iv,F =

Z 1

0
ds1 . . .

Z 1

0
dsN@s1 . . . @sNCN (x+s1r, . . . ,x+sNr)

(9)
and so can be expressed as combination of multipoint correlation function. It is thus more general to study such
multipoint correlation functions.

A. C2

Let’s start from the Two point correlation function:

C2(x1,x2; t) = h✓(x1, t)✓(x2, t)iF,v =

Z t

ds1

Z t
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Z
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The goal is to understand the scaling of SF,  
which are connected to correlation functions:
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A. C2
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ds1
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dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)iv�(|y1 � y2|)�(s1 � s2) (11)

=

Z t

ds

Z
dy1dy2hpv(y1, s|x, t)pv(y2, s|y, t)iv�(|y1 � y2|) (12)

=

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (13)

So far generic for any velocity field, assuming a specific statistics for the velocity (details will follow) one can show
that

@tP2(y1,y2; s|x1,x2; t) = M2P2(y1,y2; s|x1,x2; t) (14)

with P2(y1,y2; t|x1,x2; t) = �(y1 � x1)�(y2 � x2) and M2 acting on x1,x2.
So we have:[1]

@tC2(x1,x2; t) = @t

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (15)

=

Z t

ds

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) +

Z
dy1dy2P2(y1,y2; t|x1,x2; t)�(|y1 � y2|)(16)

=

Z t

ds

Z
dy1dy2M2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (17)

= M2

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (18)

= M2C2(x1,x2; t) + �(|x1 � x2|) (19)

A simpler way to derive the above equation is: Assume to know C2(x1,x2; s) what is its value at time t? If Forcing
and velocity are independent the evolution of C2 will be given by

C2(x1,x2; t) =

Z
dy1dy2P2(y1,y2; s|x1,x2; t)C2(y1,y2; s) +

Z t

s
d⌧

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (20)

Now if we derive over time we have

@tC2(x1,x2; t) = M2C2(y1,y2; t) +

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (21)

= M2C2(x1,x2; t) + �(|x1 � x2|) (22)

where the latter equality is obtained noticing that

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1�y2|) =

Z
dy1dy2(P2(y1,y2; t|x1,x2; t)�P2(y1,y2; s|x1,x2; s))�(|y1�y2|) = 0

B. CN

Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
dyPN (y; s|x; t)CN (y; s) +

Z t

s
d⌧

Z
dyPN (y; s|x; t)(CN�2 ⌦ �)(y, ⌧) (23)
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We start with the 2-points Correlation function and use
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So far generic for any velocity field, assuming a specific statistics for the velocity (details will follow) one can show
that

@tP2(y1,y2; s|x1,x2; t) = M2P2(y1,y2; s|x1,x2; t) (14)

with P2(y1,y2; t|x1,x2; t) = �(y1 � x1)�(y2 � x2) and M2 acting on x1,x2.
So we have:[1]
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A simpler way to derive the above equation is: Assume to know C2(x1,x2; s) what is its value at time t? If Forcing
and velocity are independent the evolution of C2 will be given by
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Z
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Now if we derive over time we have
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B. CN

Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
dyPN (y; s|x; t)CN (y; s) +

Z t

s
d⌧

Z
dyPN (y; s|x; t)(CN�2 ⌦ �)(y, ⌧) (23)
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We start with the 2-points Correlation function and use
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I. NOTES ON LAGRANGIAN VIEW OF SCALAR TURBULENCE

@t✓ + v ·r✓ = �✓ + F (1)

Assumption: incompressibility ! r · v = 0

Assumption: ! Time uncorrelated, Gaussian Forcing

hF (x, t)F (y, t0)iF = �(t� t0)�(|x� y|) (2)

Eq. (1) is equivalent to the SDE:

ẏ(s) = v(y(s), s) +
p
2⌘(s) h⌘(t)⌘(t0)i = �(t� t0) (3)

�̇(s) = F (y(s), s) (4)

Assuming ✓(x,�1) = 0 we have that (the lower bound to �1 is implicit) It is easily proven that

✓(x, t) = h�i⌘|y(t)=x =

Z t

dshF (y(s;x, t), s)i⌘ (5)

Which, by introducing pv(y, s|x, t) = h�(y � y(s;x, t)i⌘ the Lagrangian propagator pv(y, t|x, t) = �(x � y) (notice
that it depends on the velocity!), can be rewritten as

✓(x, t) =

Z t

ds

Z
dypv(y, s|x, t)F (y, s) (6)

To prove that this solves the scalar transport equation (1) use

@tpv(y, s|x, t) = �v ·rpv(y, s|x, t) + �pv(y, s|x, t) (7)

II. MULTIPOINT CORRELATION FUNCTIONS

In principle, we are interested in understanding the scaling behavior of structure functions, i.e.

SN (r) = h(✓(x+ r, t)� ✓(x, t))N iv,F (8)

However, SN can be rewritten as:

SN (r) = h(✓(x+r, t)�✓(x, t))N iv,F = h
✓Z 1

0
@s✓(x+ sr)ds

◆N

iv,F = @s1 . . . @sN

Z 1

0
ds1 . . .

Z 1

0
dsNCN (x+s1r, . . . ,x+sNr)

(9)
and so can be expressed as combination of multipoint correlation function. It is thus more general to study such
multipoint correlation functions.

A. C2

Let’s start from the Two point correlation function:

C2(x1,x2; t) = h✓(x1, t)✓(x2, t)iF,v =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)ivhF (y1, s1)F (y2, s2)i (10)

NB we could separate the averages on velocity and forcing 
 because we are considering passive scalars



Multipoint correlation functions
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The goal is to understand the scaling of SF,  
which are connected to correlation functions:
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In the following we assume Gaussian, uncorrelated forcing, acting at large scales
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B. CN

Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
dyPN (y; s|x; t)CN (y; s) +

Z t

s
d⌧

Z
dyPN (y; s|x; t)(CN�2 ⌦ �)(y, ⌧) (23)
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The goal is to understand the scaling of SF,  
which are connected to correlation functions:
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In the following we assume Gaussian, uncorrelated forcing, acting at large scales

Notes on Rotational Brownian Motion

Massimo Cencini1

1CNR-ISC, Via dei Taurini 19, 00185 Roma, Italy.

I. NOTES ON LAGRANGIAN VIEW OF SCALAR TURBULENCE

@t✓ + v ·r✓ = �✓ + F (1)

Assumption: incompressibility ! r · v = 0

Assumption: ! Time uncorrelated, Gaussian Forcing

hF (x, t)F (y, t0)iF = �(t� t0)�(|x� y|) (2)

Eq. (1) is equivalent to the SDE:
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@t✓ + v ·r✓ = �✓ + F (1)

Assumption: incompressibility ! r · v = 0

Assumption: ! Time uncorrelated, Gaussian Forcing

hF (x, t)F (y, t0)iF = �(t� t0)�(|x� y|) (2)

Eq. (1) is equivalent to the SDE:

ẏ(s) = v(y(s), s) +
p
2⌘(s) h⌘(t)⌘(t0)i = �(t� t0) (3)

�̇(s) = F (y(s), s) (4)

Assuming ✓(x,�1) = 0 we have that (the lower bound to �1 is implicit) It is easily proven that

✓(x, t) = h�i⌘|y(t)=x =

Z t

dshF (y(s;x, t), s)i⌘ (5)

Which, by introducing pv(y, s|x, t) = h�(y � y(s;x, t)i⌘ the Lagrangian propagator pv(y, t|x, t) = �(x � y) (notice
that it depends on the velocity!), can be rewritten as

✓(x, t) =

Z t

ds

Z
dypv(y, s|x, t)F (y, s) (6)

To prove that this solves the scalar transport equation (1) use

@tpv(y, s|x, t) = �v ·rpv(y, s|x, t) + �pv(y, s|x, t) (7)

II. MULTIPOINT CORRELATION FUNCTIONS

In principle, we are interested in understanding the scaling behavior of structure functions, i.e.

SN (r) = h(✓(x+ r, t)� ✓(x, t))N iv,F (8)
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SN (r) = h(✓(x+r, t)�✓(x, t))N iv,F = h
✓Z 1

0
@s✓(x+ sr)ds

◆N

iv,F = @s1 . . . @sN

Z 1

0
ds1 . . .

Z 1

0
dsNCN (x+s1r, . . . ,x+sNr)

(9)
and so can be expressed as combination of multipoint correlation function. It is thus more general to study such
multipoint correlation functions.

A. C2

Let’s start from the Two point correlation function:

C2(x1,x2; t) = h✓(x1, t)✓(x2, t)iF,v =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)ivhF (y1, s1)F (y2, s2)i (10)
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So far generic for any velocity field, assuming a specific statistics for the velocity (details will follow) one can show
that
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A simpler way to derive the above equation is: Assume to know C2(x1,x2; s) what is its value at time t? If Forcing
and velocity are independent the evolution of C2 will be given by
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s
d⌧

Z
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Now if we derive over time we have
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�

+ �(|x1 � x2|) = M2C2(x1,x2; t) + �(|x1 � x2|) (16)

B. CN

Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
dyPN (y; s|x; t)CN (y; s) +

Z t

s
d⌧

Z
dyPN (y; s|x; t)(CN�2 ⌦ �)(y, ⌧) (17)

where

(CN�2 ⌦ �)(x1, . . . ,xN , ⌧) =
X

n<m

CN�2(x1, . . . [n̂] . . . [m̂] . . . ,xN )�(|xn � xm|)
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V. TIME LINE FOR THE KRAICHNAN MODEL

1968: Kraichnan introduces the model and solves for the two-point function

1994: Kraichnan attempt a scheme for solving the hierarchy (Hopf equation) (30), the result is wrong but the intuition
that anomalous scaling is present for N > 2 is correct

1995: 3 independent perturbative schemes are proposed ⇠ ! 0 (Gawedski & Kupiainen) ⇠ ! 2 (Shraiman & Siggia)
and d ! 1 (Falkovich et al) lead to the zero modes dominance

1995-2000: The Lagrangian interpretation of zero modes takes place and lead to numerical tests in non-Kraichnan
flows

VI. CONCLUDING REMARKS

The above derivation is possible only in the framework of the Kraichnan model, for which perturbative scheme are
possible and the time uncorrelation (which brings about time-reversibility and Markovianity of Lagrangian trajecto-
ries) strongly simplify the treatment. What does happen a non-trivial velocity field.

Celani & Vergassola (2001) made a test in passive scalar turbulence in 2d NS in the inverse cascade and provided
evidence for the zero mode mechanism by showing that when using the 3-point correlation (which is non vanishing in
the presence of a scalar gradient) as a test function for a Lagrangian average it is conserved.

[1] Remember that @t

R t f(s, t)ds =
R t @tf(s, t)ds+ f(t, t).
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Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
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(Kraichnan)
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V. TIME LINE FOR THE KRAICHNAN MODEL

1968: Kraichnan introduces the model and solves for the two-point function

1994: Kraichnan attempt a scheme for solving the hierarchy (Hopf equation) (30), the result is wrong but the intuition
that anomalous scaling is present for N > 2 is correct

1995: 3 independent perturbative schemes are proposed ⇠ ! 0 (Gawedski & Kupiainen) ⇠ ! 2 (Shraiman & Siggia)
and d ! 1 (Falkovich et al) lead to the zero modes dominance

1995-2000: The Lagrangian interpretation of zero modes takes place and lead to numerical tests in non-Kraichnan
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The above derivation is possible only in the framework of the Kraichnan model, for which perturbative scheme are
possible and the time uncorrelation (which brings about time-reversibility and Markovianity of Lagrangian trajecto-
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evidence for the zero mode mechanism by showing that when using the 3-point correlation (which is non vanishing in
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[1] Remember that @t

R t f(s, t)ds =
R t @tf(s, t)ds+ f(t, t).

2

A. C2

Let’s start from the Two point correlation function:

C2(x1,x2; t) = h✓(x1, t)✓(x2, t)iF,v =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)ivhF (y1, s1)F (y2, s2)i (10)

C2(x1,x2; t) =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)iv�(|y1 � y2|)�(s1 � s2) (11)

=

Z t

ds

Z
dy1dy2hpv(y1, s|x, t)pv(y2, s|y, t)iv�(|y1 � y2|) (12)

=

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (13)

So far generic for any velocity field, assuming a specific statistics for the velocity (details will follow) one can show
that

@tP2(y1,y2; s|x1,x2; t) = M2P2(y1,y2; s|x1,x2; t) (14)

with P2(y1,y2; t|x1,x2; t) = �(y1 � x1)�(y2 � x2) and M2 acting on x1,x2.
So we have:[1]

@tC2(x1,x2; t) = @t

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|)

=

Z t

ds

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) +

Z
dy1dy2P2(y1,y2; t|x1,x2; t)�(|y1 � y2|)

=

Z t

ds

Z
dy1dy2M2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|)

= M2

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|)

= M2C2(x1,x2; t) + �(|x1 � x2|)

A simpler way to derive the above equation is: Assume to know C2(x1,x2; s) what is its value at time t? If Forcing
and velocity are independent the evolution of C2 will be given by

C2(x1,x2; t) =

Z
dy1dy2P2(y1,y2; s|x1,x2; t)C2(y1,y2; s) +

Z t

s
d⌧

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (15)

Now if we derive over time we have

@tC2(x1,x2; t) = M2C2(y1,y2; t) +

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (16)

= M2C2(x1,x2; t) + �(|x1 � x2|) (17)

where the latter equality is obtained noticing that

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1�y2|) =

Z
dy1dy2(P2(y1,y2; t|x1,x2; t)�P2(y1,y2; s|x1,x2; s))�(|y1�y2|) = 0

B. CN

Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
dyPN (y; s|x; t)CN (y; s) +

Z t

s
d⌧

Z
dyPN (y; s|x; t)(CN�2 ⌦ �)(y, ⌧) (18)

(Kraichnan)



2-points correlation function

2

A. C2

Let’s start from the Two point correlation function:

C2(x1,x2; t) = h✓(x1, t)✓(x2, t)iF,v =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)ivhF (y1, s1)F (y2, s2)i (10)

C2(x1,x2; t) =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)iv�(|y1 � y2|)�(s1 � s2) (11)

=

Z t

ds

Z
dy1dy2hpv(y1, s|x, t)pv(y2, s|y, t)iv�(|y1 � y2|) (12)

=

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (13)

So far generic for any velocity field, assuming a specific statistics for the velocity (details will follow) one can show
that

@tP2(y1,y2; s|x1,x2; t) = M2P2(y1,y2; s|x1,x2; t) (14)

with P2(y1,y2; t|x1,x2; t) = �(y1 � x1)�(y2 � x2) and M2 acting on x1,x2.
So we have:[1]

@tC2(x1,x2; t) = @t

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (15)

=

Z t

ds

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) +

Z
dy1dy2P2(y1,y2; t|x1,x2; t)�(|y1 � y2|)(16)

=

Z t

ds

Z
dy1dy2M2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (17)

= M2

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (18)

= M2C2(x1,x2; t) + �(|x1 � x2|) (19)

A simpler way to derive the above equation is: Assume to know C2(x1,x2; s) what is its value at time t? If Forcing
and velocity are independent the evolution of C2 will be given by

C2(x1,x2; t) =

Z
dy1dy2P2(y1,y2; s|x1,x2; t)C2(y1,y2; s) +

Z t

s
d⌧

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (20)

Now if we derive over time we have

@tC2(x1,x2; t) = M2C2(y1,y2; t) +

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (21)

= M2C2(x1,x2; t) + �(|x1 � x2|) (22)

where the latter equality is obtained noticing that

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1�y2|) =

Z
dy1dy2(P2(y1,y2; t|x1,x2; t)�P2(y1,y2; s|x1,x2; s))�(|y1�y2|) = 0

B. CN

Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
dyPN (y; s|x; t)CN (y; s) +

Z t

s
d⌧

Z
dyPN (y; s|x; t)(CN�2 ⌦ �)(y, ⌧) (23)

<latexit sha1_base64="VhVc5IfEG1jpxB1QE0KilItMojE="></latexit>

M2 a given operator

5

V. TIME LINE FOR THE KRAICHNAN MODEL

1968: Kraichnan introduces the model and solves for the two-point function

1994: Kraichnan attempt a scheme for solving the hierarchy (Hopf equation) (30), the result is wrong but the intuition
that anomalous scaling is present for N > 2 is correct

1995: 3 independent perturbative schemes are proposed ⇠ ! 0 (Gawedski & Kupiainen) ⇠ ! 2 (Shraiman & Siggia)
and d ! 1 (Falkovich et al) lead to the zero modes dominance

1995-2000: The Lagrangian interpretation of zero modes takes place and lead to numerical tests in non-Kraichnan
flows

VI. CONCLUDING REMARKS

The above derivation is possible only in the framework of the Kraichnan model, for which perturbative scheme are
possible and the time uncorrelation (which brings about time-reversibility and Markovianity of Lagrangian trajecto-
ries) strongly simplify the treatment. What does happen a non-trivial velocity field.

Celani & Vergassola (2001) made a test in passive scalar turbulence in 2d NS in the inverse cascade and provided
evidence for the zero mode mechanism by showing that when using the 3-point correlation (which is non vanishing in
the presence of a scalar gradient) as a test function for a Lagrangian average it is conserved.

[1] Remember that @t

R t f(s, t)ds =
R t @tf(s, t)ds+ f(t, t).

2

A. C2

Let’s start from the Two point correlation function:

C2(x1,x2; t) = h✓(x1, t)✓(x2, t)iF,v =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)ivhF (y1, s1)F (y2, s2)i (10)

C2(x1,x2; t) =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)iv�(|y1 � y2|)�(s1 � s2) (11)

=

Z t

ds

Z
dy1dy2hpv(y1, s|x, t)pv(y2, s|y, t)iv�(|y1 � y2|) (12)

=

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (13)

So far generic for any velocity field, assuming a specific statistics for the velocity (details will follow) one can show
that

@tP2(y1,y2; s|x1,x2; t) = M2P2(y1,y2; s|x1,x2; t) (14)

with P2(y1,y2; t|x1,x2; t) = �(y1 � x1)�(y2 � x2) and M2 acting on x1,x2.
So we have:[1]

@tC2(x1,x2; t) = @t

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|)

=

Z t

ds

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) +

Z
dy1dy2P2(y1,y2; t|x1,x2; t)�(|y1 � y2|)

=

Z t

ds

Z
dy1dy2M2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|)

= M2

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|)

= M2C2(x1,x2; t) + �(|x1 � x2|)

A simpler way to derive the above equation is: Assume to know C2(x1,x2; s) what is its value at time t? If Forcing
and velocity are independent the evolution of C2 will be given by

C2(x1,x2; t) =

Z
dy1dy2P2(y1,y2; s|x1,x2; t)C2(y1,y2; s) +

Z t

s
d⌧

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (15)

Now if we derive over time we have

@tC2(x1,x2; t) = M2C2(y1,y2; t) +

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (16)

= M2C2(x1,x2; t) + �(|x1 � x2|) (17)

where the latter equality is obtained noticing that

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1�y2|) =

Z
dy1dy2(P2(y1,y2; t|x1,x2; t)�P2(y1,y2; s|x1,x2; s))�(|y1�y2|) = 0

B. CN

Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
dyPN (y; s|x; t)CN (y; s) +

Z t

s
d⌧

Z
dyPN (y; s|x; t)(CN�2 ⌦ �)(y, ⌧) (18)

(Kraichnan)



2-points correlation function

2

A. C2

Let’s start from the Two point correlation function:

C2(x1,x2; t) = h✓(x1, t)✓(x2, t)iF,v =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)ivhF (y1, s1)F (y2, s2)i (10)

C2(x1,x2; t) =

Z t

ds1

Z t

ds2

Z
dy1dy2hpv(y1, s1|x, t)pv(y2, s2|y, t)iv�(|y1 � y2|)�(s1 � s2) (11)

=

Z t

ds

Z
dy1dy2hpv(y1, s|x, t)pv(y2, s|y, t)iv�(|y1 � y2|) (12)

=

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (13)

So far generic for any velocity field, assuming a specific statistics for the velocity (details will follow) one can show
that

@tP2(y1,y2; s|x1,x2; t) = M2P2(y1,y2; s|x1,x2; t) (14)

with P2(y1,y2; t|x1,x2; t) = �(y1 � x1)�(y2 � x2) and M2 acting on x1,x2.
So we have:[1]

@tC2(x1,x2; t) = @t

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (15)

=

Z t

ds

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) +

Z
dy1dy2P2(y1,y2; t|x1,x2; t)�(|y1 � y2|)(16)

=

Z t

ds

Z
dy1dy2M2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (17)

= M2

Z t

ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (18)

= M2C2(x1,x2; t) + �(|x1 � x2|) (19)

A simpler way to derive the above equation is: Assume to know C2(x1,x2; s) what is its value at time t? If Forcing
and velocity are independent the evolution of C2 will be given by

C2(x1,x2; t) =

Z
dy1dy2P2(y1,y2; s|x1,x2; t)C2(y1,y2; s) +

Z t

s
d⌧

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (20)

Now if we derive over time we have

@tC2(x1,x2; t) = M2C2(y1,y2; t) +

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1 � y2|) + �(|x1 � x2|) (21)

= M2C2(x1,x2; t) + �(|x1 � x2|) (22)

where the latter equality is obtained noticing that

Z t

s
d⌧

Z
dy1dy2@tP2(y1,y2; s|x1,x2; t)�(|y1�y2|) =

Z
dy1dy2(P2(y1,y2; t|x1,x2; t)�P2(y1,y2; s|x1,x2; s))�(|y1�y2|) = 0

B. CN

Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
dyPN (y; s|x; t)CN (y; s) +

Z t

s
d⌧

Z
dyPN (y; s|x; t)(CN�2 ⌦ �)(y, ⌧) (23)

<latexit sha1_base64="VhVc5IfEG1jpxB1QE0KilItMojE=">AAACRnicbZDLSsNAFIZP6q3WW6tLN8EiuJCS1FpdFt24ERSsCm0ok+lJHZxcnJkIIeQ53Orb+Aq+hDtx6yTNQmsPzPDznzkz/3xuxJlUlvVhVBYWl5ZXqqu1tfWNza16Y/tWhrGg2KchD8W9SyRyFmBfMcXxPhJIfJfjnft4nvfvnlFIFgY3KonQ8ckkYB6jRGnLGfpEPVDC08ts1B7Vm1bLKsr8L+xSNKGsq1HDaA7HIY19DBTlRMqBbUXKSYlQjHLMasNYYkToI5ngQMuA+CidtEidmfvaGZteKPQKlFm4vydS4kuZ+K4+maeUs73cnNtz/bn29Nm/mZR36qQsiGKFAZ1G8mJuqtDMYZljJpAqnmhBqGD6VyZ9IIJQpZHWhmP0NPbi3nQiMMlSMXGz1Gp1jg41uONiyzRWexbif3HbbtndVve60+ydlYCrsAt7cAA2nEAPLuAK+kDhCV7gFd6Md+PT+DK+p0crRjmzA3+qAj9Euq+C</latexit>

M2 a given operator
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V. TIME LINE FOR THE KRAICHNAN MODEL

1968: Kraichnan introduces the model and solves for the two-point function

1994: Kraichnan attempt a scheme for solving the hierarchy (Hopf equation) (30), the result is wrong but the intuition
that anomalous scaling is present for N > 2 is correct

1995: 3 independent perturbative schemes are proposed ⇠ ! 0 (Gawedski & Kupiainen) ⇠ ! 2 (Shraiman & Siggia)
and d ! 1 (Falkovich et al) lead to the zero modes dominance

1995-2000: The Lagrangian interpretation of zero modes takes place and lead to numerical tests in non-Kraichnan
flows

VI. CONCLUDING REMARKS

The above derivation is possible only in the framework of the Kraichnan model, for which perturbative scheme are
possible and the time uncorrelation (which brings about time-reversibility and Markovianity of Lagrangian trajecto-
ries) strongly simplify the treatment. What does happen a non-trivial velocity field.

Celani & Vergassola (2001) made a test in passive scalar turbulence in 2d NS in the inverse cascade and provided
evidence for the zero mode mechanism by showing that when using the 3-point correlation (which is non vanishing in
the presence of a scalar gradient) as a test function for a Lagrangian average it is conserved.

[1] Remember that @t

R t f(s, t)ds =
R t @tf(s, t)ds+ f(t, t).
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ds

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (13)

So far generic for any velocity field, assuming a specific statistics for the velocity (details will follow) one can show
that

@tP2(y1,y2; s|x1,x2; t) = M2P2(y1,y2; s|x1,x2; t) (14)

with P2(y1,y2; t|x1,x2; t) = �(y1 � x1)�(y2 � x2) and M2 acting on x1,x2.
So we have:[1]
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= M2C2(x1,x2; t) + �(|x1 � x2|)

A simpler way to derive the above equation is: Assume to know C2(x1,x2; s) what is its value at time t? If Forcing
and velocity are independent the evolution of C2 will be given by

C2(x1,x2; t) =

Z
dy1dy2P2(y1,y2; s|x1,x2; t)C2(y1,y2; s) +

Z t

s
d⌧

Z
dy1dy2P2(y1,y2; s|x1,x2; t)�(|y1 � y2|) (15)

Now if we derive over time we have
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Z t

s
d⌧
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B. CN

Now let’s do a step forward: consider CN (x; t) = h✓(x1, t) . . . ✓(xN , t)iv,F with x = (x1, . . . ,xN ).
Generalizing the result for C2 we can write:

CN (x; t) =

Z
dyPN (y; s|x; t)CN (y; s) +

Z t

s
d⌧

Z
dyPN (y; s|x; t)(CN�2 ⌦ �)(y, ⌧) (18)

(Kraichnan)
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K. Gawedzki  “Soluble models of turbulent advection”  arXiv preprint nlin/0207058 (2002).
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where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)

In particular, by choosing:

D↵,�(r) = D0�↵� � d↵�(r) (22)

with d↵�(r) taking (in the inertial range) ⌘ ⌧ r ⌧ Lv the scaling form

d↵,�(r) = D1r
⇠
⇣
(d� 1 + ⇠)�↵� � ⇠

r↵r�
r2

⌘
(23)

For such flow the operator MN takes the form

MN = �
X

n<m

d↵�(rn � rm)@rn,↵@rm,� + 
NX

n=1

�rn

H
H

H
H
H

H
H
H

+D0�↵�

NX

n=1

@2
rn,↵

(24)

where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠
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where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
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As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠
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IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

3

where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)

In particular, by choosing:

D↵,�(r) = D0�↵� � d↵�(r) (22)

with d↵�(r) taking (in the inertial range) ⌘ ⌧ r ⌧ Lv the scaling form

d↵,�(r) = D1r
⇠
⇣
(d� 1 + ⇠)�↵� � ⇠

r↵r�
r2

⌘
(23)

For such flow the operator MN takes the form

MN = �
X

n<m

d↵�(rn � rm)@rn,↵@rm,� + 
NX

n=1

�rn

XXXXXXXXXX
+D0�↵�

 
NX

n=1

@rn,↵

!2

(24)

where the last term drops for spatially invariant functions.
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hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)

In particular, by choosing:

D↵,�(r) = D0�↵� � d↵�(r) (22)

with d↵�(r) taking (in the inertial range) ⌘ ⌧ r ⌧ Lv the scaling form
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

3

where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)
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D↵,�(r) = D0�↵� � d↵�(r) (22)
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2
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Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation
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where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
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at stationarity
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where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension
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Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:
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In the following lets readsorb the � in the definitin of MN
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3

where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)

In particular, by choosing:

D↵,�(r) = D0�↵� � d↵�(r) (22)

with d↵�(r) taking (in the inertial range) ⌘ ⌧ r ⌧ Lv the scaling form
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For such flow the operator MN takes the form
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

For small r 4

M4C4 ⇠ �(0)C2 =) [C4] = [M4]
�1[C2] = L2(2�⇠)

...

MNCN ⇠ �(0)CN�2 =) [CN ] = [MN ]�1[CN�2] = LN(2�⇠)

So the scaling is always dimensiona?

Zero Modes Dominance
The scaling arguments presented above are just based on the inhomogeneous solution of the PDE defining the CN

the most general solution of

�MNCN = CN�2 ⌦ � (26)

is

CN (r) = Cinhom
N (r) + ZN (r) (27)

where

MNZN = 0

are the ZERO MODES. Now if ZN is a scaling function with exponents smaller than the dimensional one ⇣dim =
N(2� ⇠) it will dominate the scaling.

N.B. Zero modes require matching with the inhomogeneous solution and thus matching with the “boundary
conditions” imposed by the forcing and velocity length scales, this will not anyway a↵ect the scaling but just the
multiplicative costants.

Lagrangian (Physical) interpretation of the Modes Dominance
OBSERVATION: Since, in the Kraichnan flow v(x, t) is time-reversal invariant (thanks to the delta correlation in
time), the backward and forward probability distribution functions coincide and evolve with the same operator.

We now consider the so-called Lagrangian average, given a function of N points f(x) we can define its Lagrangian
average as

hfi(t;x0) =

Z
dxPN (x, t|x0, 0)f(x) (28)

such averages allow to test the Lagrangian dynamics. Consider now a scaling function f(�x) = ��f(x) what do we
expect for its time growth? For a generic function,

hfi(t;x0) ⇠ t�/(2�⇠) (29)

e.g. f(x1,x2) = ||x1 � x2||2 = R2 then we are just doing Richardson dispersion and hfi(t;x0)i ⇠ t2/(2�xi (⇠ = 0 !
R2 ⇠ t Brownian di↵usion).

In general a configuration of N -points define a shape and a size: the size is e.g. R = (
P

n<m R2
nm)1/2 and the

shape R/R, for generic function the lagrangian average leads to a time growth inherited by the growth of the size
with time, as exemplified before. Let’s now consider the Lagrangian average of zero modes:

hZN i(t;x0) =

Z
dxPN (x, t|x0, 0)ZN (x) (30)

by doing the time derivative one realizes that

d

dt
hZN i(t;x0) =

Z
dx@tPN (x, t|x0, 0)ZN (x) = hMNZN i(t|0,x0) = 0! (31)

So zero modes are functions which are statistically conserved by the Lagrangian flow. Example for ⇠ = 0 zero modes
are function that annihilate under the application of the Laplacian, and are known as Harmonic Polynomials e.g.

hR2
12 �R2

34i = hR2
12i � hR2

34i = (R2
12(0) + 2Dt)� (R2

34(0) + 2Dt) = const



Dimensional analysis
Dimensional analysis

3

where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

3

where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:
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where the last term drops for spatially invariant functions.
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where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES
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Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation
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�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

3

where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension
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Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation
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where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension
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Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

at stationarity

3

where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)

In particular, by choosing:

D↵,�(r) = D0�↵� � d↵�(r) (22)

with d↵�(r) taking (in the inertial range) ⌘ ⌧ r ⌧ Lv the scaling form

d↵,�(r) = D1r
⇠
⇣
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For such flow the operator MN takes the form
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where the last term drops for spatially invariant functions.
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of the forcing terms.

As for N = 2 doing the time derivative one obtains
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

For small r 4

M4C4 ⇠ �(0)C2 =) [C4] = [M4]
�1[C2] = L2(2�⇠)

...

MNCN ⇠ �(0)CN�2 =) [CN ] = [MN ]�1[CN�2] = LN(2�⇠)

So the scaling is always dimensiona?

Zero Modes Dominance
The scaling arguments presented above are just based on the inhomogeneous solution of the PDE defining the CN

the most general solution of

�MNCN = CN�2 ⌦ � (26)

is

CN (r) = Cinhom
N (r) + ZN (r) (27)

where

MNZN = 0

are the ZERO MODES. Now if ZN is a scaling function with exponents smaller than the dimensional one ⇣dim =
N(2� ⇠) it will dominate the scaling.

N.B. Zero modes require matching with the inhomogeneous solution and thus matching with the “boundary
conditions” imposed by the forcing and velocity length scales, this will not anyway a↵ect the scaling but just the
multiplicative costants.

Lagrangian (Physical) interpretation of the Modes Dominance
OBSERVATION: Since, in the Kraichnan flow v(x, t) is time-reversal invariant (thanks to the delta correlation in
time), the backward and forward probability distribution functions coincide and evolve with the same operator.

We now consider the so-called Lagrangian average, given a function of N points f(x) we can define its Lagrangian
average as

hfi(t;x0) =

Z
dxPN (x, t|x0, 0)f(x) (28)

such averages allow to test the Lagrangian dynamics. Consider now a scaling function f(�x) = ��f(x) what do we
expect for its time growth? For a generic function,

hfi(t;x0) ⇠ t�/(2�⇠) (29)

e.g. f(x1,x2) = ||x1 � x2||2 = R2 then we are just doing Richardson dispersion and hfi(t;x0)i ⇠ t2/(2�xi (⇠ = 0 !
R2 ⇠ t Brownian di↵usion).

In general a configuration of N -points define a shape and a size: the size is e.g. R = (
P

n<m R2
nm)1/2 and the

shape R/R, for generic function the lagrangian average leads to a time growth inherited by the growth of the size
with time, as exemplified before. Let’s now consider the Lagrangian average of zero modes:

hZN i(t;x0) =

Z
dxPN (x, t|x0, 0)ZN (x) (30)

by doing the time derivative one realizes that

d

dt
hZN i(t;x0) =

Z
dx@tPN (x, t|x0, 0)ZN (x) = hMNZN i(t|0,x0) = 0! (31)

So zero modes are functions which are statistically conserved by the Lagrangian flow. Example for ⇠ = 0 zero modes
are function that annihilate under the application of the Laplacian, and are known as Harmonic Polynomials e.g.

hR2
12 �R2

34i = hR2
12i � hR2

34i = (R2
12(0) + 2Dt)� (R2

34(0) + 2Dt) = const
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dx@tPN (x, t|x0, 0)ZN (x) = hMNZN i(t|0,x0) = 0! (31)
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Where does it come the anomalous scaling?
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where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)

In particular, by choosing:

D↵,�(r) = D0�↵� � d↵�(r) (22)

with d↵�(r) taking (in the inertial range) ⌘ ⌧ r ⌧ Lv the scaling form

d↵,�(r) = D1r
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For such flow the operator MN takes the form
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

The most general solution is given by 
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where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
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where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension
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Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:
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⇠ ! 0 Perturbation around Brownian 

motion

and a matching with the regular perturbation expansion
for a general geometry is thus needed. Second, for al-
most smooth velocities, close particles separate very
slowly and their collective behavior is masked by this
effect which leads to an accumulation of zero modes
with very close scaling dimensions. We shall start by the
more regular cases of small ! and large d . The scaling of
the irreducible four-point zero mode with the lowest di-
mension was first calculated to the linear order in ! by
Gawȩdzki and Kupiainen (1995) by a version of degen-
erate Rayleigh-Schrödinger perturbation theory. In par-
allel, a similar calculation in the linear order in 1/d was
performed by Chertkov et al. (1995b). Bernard et al.
(1996) streamlined the small ! analysis and generalized
it to any even order, following a similar generalization
by Chertkov and Falkovich (1996) for the 1/d expansion.
We sketch here the main lines of those calculations.

As we discussed in Sec. II.E.3, the operator M̃N is
reduced to the Laplacian (74) for !!0. The zero modes
of the Laplacian depend on the size of the particle con-
figuration as Rj and on its shape as the eigenfunctions of
“!̂ 2 with angular momentum j . The zero modes invariant
under d-dimensional translations, rotations, and reflec-
tions can be reexpressed as polynomials in Rnm

2 . For
even N , the irreducible zero modes with the lowest scal-
ing dimension have the form

fN ,0"R" #!R12
2 R34

2 ¯R(N"1)N
2 #$¯% , (81)

where $¯% denotes a combination of terms that depend
on the positions of (N"1) or less particles. For four
particles, the zero mode is 2(d#2)R12

2 R34
2 "d(R12

4

#R34
4 ), our recurrent example. The terms $¯% are not

uniquely determined since any degree N zero mode for
a smaller number of points might be added. Further-
more, permutations of the points in fN ,0 give other zero
modes so that we may symmetrize the above expressions
and look only at the permutation-invariant modes. The
scaling dimension &N ,0 of fN ,0 is clearly equal to N . This
linear growth signals the absence of attractive effects
between the particles diffusing with a constant diffusiv-
ity (no particle binding in the shape evolution). As we
shall see in Sec. III.C.1, this leads to the disappearance
of the intermittency in the advected scalar field, that be-
comes Gaussian in the limit !→0.

To the linear order in !, the operator M̃N will differ
from the Laplacian by a second-order differential opera-
tor "!V , involving logarithmic terms 'ln(rnm). The zero
mode and its scaling dimension are expanded as f0
#!f1 and N#!&1 , respectively. The lowest order term
f0 is given by the symmetrization of Eq. (81). As usual in
such problems, the degeneracy hidden in $¯% may be
lifted by the perturbation that fixes f0 for each zero
mode, see below. At the first order in !, the equations
that define the zero modes and their scaling dimension
reduce to the relations

“! 2f1!Vf0 , "R(R"N #f1!&1f0 . (82)

Given an arbitrary zero mode f0 , one shows that the
first equation admits a solution of the form f1!h

#)n$mhnm ln(rnm) with O(d)-invariant, degree N poly-
nomials hnm and h , the latter being determined up to
zero modes of “! 2. Note that the function (R(R"N)f1
!)n$mhnm is also annihilated by the Laplacian

“! 2"R(R"N #f1!"R(R"N#2 #“! 2f1

!"R(R"N#2 #Vf0

!"$R(R ,V%#2V #f0#V"R(R"N #f0

!0. (83)

The last equality follows from the scaling of f0 and the
fact that the commutators of R(R with M̃N and V are
(!"2)M̃N and "“! 2"2V , respectively. One obtains this
way a linear map * on the space of the degree N zero
modes of the Laplacian: *f0!(R(R"N)f1 . The second
equation in Eq. (82) states that f0 must be chosen as an
eigenstate of the map *. Furthermore, the function
should not belong to the subspace of unit codimension
of the zero modes that do not depend on all the points.
It is easy to see that such subspace is preserved by the
map *. As the result, the eigenvalue &1 is equal to the
ratio between the coefficients of R12

2 R34
2 ¯R(N"1)N

2 in
*f0 and in f0 . The latter is easy to extract, see Bernard
et al. (1996) for the details, and yields the result &1!
" N(N#d)/2(d#2) or, equivalently,

&N ,0!
N
2 "2"!#"

N"N"2 #

2"d#2 #
!#O"!2#, (84)

giving the leading correction to the scaling dimension of
the lowest irreducible zero mode. Note that to that or-
der &N ,0 is a concave function of N . Higher-order terms
in ! have been analyzed in Adzhemyan et al. (1998) (the
second order) and in Adzhemyan et al. (2001) (the third
order). The latter papers used a renormalization group
resummation of the small ! perturbative series for the
correlation functions of the scalar gradients in conjunc-
tion with an operator product expansion; see Sec.
III.C.1. The expression (84) may be easily generalized to
the compressible Kraichnan ensemble of compressibility
degree #. The correction &1 for the tracer exponent
picks up an additional factor (1#2#) (Gawȩdzki and
Vergassola, 2000). Higher-order corrections may be
found in Antonov and Honkonen (2001). The behavior
of the density correlation functions was analyzed in
Adzhemyan and Antonov (1998), Gawȩdzki and Vergas-
sola (2000), and Antonov and Honkonen (2001).

For large dimensionality d , it is convenient to use the
variables xnm!Rnm

2"! as the independent coordinates6 to
make the d dependence in M̃N explicit. Up to higher
orders in 1/d , the operator M̃N'L" (1/d) U , where L
!d"1)n$m$(d"1)(xnm

#(2"!)xnm(xnm

2 % and U is a
second-order d-independent differential operator mix-
ing derivatives over different xnm . We shall treat L as

6Their values are restricted only by the triangle inequalities
between the interparticle distances.
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d ! 1

the unperturbed operator and ! (1/d) U as a perturba-
tion. The inclusion into L of the diagonal terms ! 1/d
makes the unperturbed operator of the same (second)
order in derivatives as the perturbation and renders the
perturbative expansion less singular. The irreducible
zero modes of L with the lowest dimension are given by
an expression similar to Eq. (81):

fN ,0"R! #"x12x34¯x(N!1)N#$¯% , (85)

and the permutations thereof. Their scaling dimension is
(N/2)(2!&). For N"4, one may, for example, take f4,0
"x12x34! $d!1/2(2!&)% (x12

2 #x34
2 ). As in the & expan-

sion, in order to take into account the perturbation U ,
one has to solve the equations

Lf1"Uf0 , ! '
n$m

xnm(xnm
!

N
2 " f1"

)1

2!&
f0 . (86)

One checks again that *f0+('n$mxnm(xnm
! N/2)f1 is

annihilated by L. In order to calculate )1 , it remains to
find the coefficient of x12¯x(N!1)N in *f0 . In its depen-
dence on the x’s, the function Uf0 scales with power
(N/2 !1). One finds f1 by applying the inverse of the
operator L to it. *f0 is then obtained by gathering the
coefficients of the logarithmic terms in f1 ; see Chertkov
et al. (1995b) for the details. When d→, , the operator
L reduces to the first order one L!+'n$m(xnm

. This sig-
nals that the particle evolution becomes deterministic at
d", , with all xnm growing linearly in time. If one is
interested only in the 1/d correction to the scaling expo-
nent and not in the zero mode, then it is possible to use
directly the more natural (but more singular) decompo-
sition M̃N!L!! (1/d)U!. The leading zero modes of L!
also have the form (85). Noting that L! is a translation
operator, the zero mode *!f0 may be obtained as the
coefficient of the logarithmically divergent term in
-0

,U!f0(xnm!t)dt ; see Chertkov and Falkovich (1996).
In both approaches, the final result is

)N ,0"
N
2 "2!&#!

N"N!2 #

2d
&#O! 1

d2" , (87)

which is consistent with the small & expression (84).
The nonisotropic zero modes, as well as those for odd

N , may be studied similarly. The zero modes of fixed
scaling dimension form a representation of the rotation
group SO(d) which may be decomposed into irreducible
components. In particular, one may consider the compo-
nents corresponding to the symmetric tensor products of
the defining representation of SO(d), labeled by the an-
gular momentum j (the multiplicity of the tensor prod-
uct). For two particles, no other representations of
SO(d) appear. The two-point operator M̃2 becomes in
each angular momentum sector an explicit second-order
differential operator in the radial variable. It is then
straightforward to extract the scaling dimensions of its
zero modes:

)2,0
j "!

d!2#&

2

#
1
2
!"d!2#&#2#

4"d!1#&#j" j#d!2 #

d!1
.

(88)

Note that )2,0
1 "1 in any d corresponding to linear zero

modes. For the three-point operator, the lowest scaling
dimensions are )3,0

0 "4! $2(d!2)/(d!1)% &#O(&2)
(Gat et al., 1997; Gat, L’vov, and Procaccia, 1997) and
)3,0

1 "3! (d#4)/(d#2) &#O(&2) (Pumir, 1996, 1997) or
)3,0

1 "3!&! 2&/d #O(1/d2) (Gutman and Balkovsky,
1996). For even N and j , the generalization of Eq. (84)
takes the form (Antonov, 1999, 2000; Arad, L’vov, et al.,
2000; Wiese, 2000)

)N ,0
j "

N
2 "2!&#!! N"N!2 #

2"d#2 #
!

j" j#d!2 #"d#1 #

2"d#2 #"d!1 # " &

#O"&2#. (89)

The effective expansion parameter in the small & or
large d approach turns out to be N&/$(2!&)d% so that
neither of them is applicable to the region of the almost
smooth velocity fields. This region requires a different
perturbative technique exploiting the numerous symme-
tries exhibited by the multiparticle evolution in the lim-
iting case &"2. Those symmetries were first noticed and
employed to derive an exact solution for the zero modes
by Shraiman and Siggia (1996). The expression of the
multiparticle operators at &"2 reads

M̃N"D1$dH2!"d#1 #J2% , (90)

with H2"' ijHijHji and J2"!' i$jJ ij
2 denoting the Ca-

simir operators of the group SL(d) and of its SO(d)
subgroup acting on the index i"1, . . . ,d of the particle
positions rn

i . The corresponding generators are given by
Hij"'n$!rn

i .rn
j # (1/d)/ ij(rn

k.rn
k)% and Jij"Hij!Hji .

The relation (90), that may be easily checked directly, is
consistent with the expression (68) for the heat kernel of
M̃N . As mentioned in Sec. II.B.1, the right-hand side of
Eq. (90) is indeed the generator of the diffusion process
W(t) on the group SL(d). In their analysis, Shraiman
and Siggia (1995) employed an alternative expression
for the multiparticle operators, exhibiting yet another
symmetry of the smooth case:

M̃N"D1! dG2!"d#1 #J2#
d!N#1

N!1
0"0#dN# " ,

(91)

where G2"'n ,m"1
N!1 GnmGmn is the quadratic Casimir of

SL(N!1) acting on the index n"1, . . . ,N!1 of the dif-
ference variables rnN

i and 0"' i ,nrn
i .rn

i is the generator
of the overall dilations. For three points, one may then
decompose the scaling translationally invariant functions
into the eigenfunctions of G2, L2 and other generators
commuting with the latter and with 0. The zero modes
of M̃3 at &"2 have the lowest scaling dimension equal
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⇠ ! 2 Perturbation around Batchelor 

limit

also found anomalous 

exponents for zero modes



Dominance of Zero Modes

3

where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)

In particular, by choosing:

D↵,�(r) = D0�↵� � d↵�(r) (22)

with d↵�(r) taking (in the inertial range) ⌘ ⌧ r ⌧ Lv the scaling form

d↵,�(r) = D1r
⇠
⇣
(d� 1 + ⇠)�↵� � ⇠

r↵r�
r2

⌘
(23)

For such flow the operator MN takes the form

MN = �
X

n<m

d↵�(rn � rm)@rn,↵@rm,� + 
NX

n=1

�rn

XXXXXXXXXX
+D0�↵�

 
NX

n=1

@rn,↵

!2

(24)

where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

The most general solution is given by 
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CN = M�1
N CN�2 ⌦ �+ ZN
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MNZN = 0

<latexit sha1_base64="x4wPfSlBva3S3PcnVIPUBYksar4="></latexit>

L⇣dim
N

<latexit sha1_base64="ZKUTips6rGD1py8b6efFGMa74Ek="></latexit>

L⇣a
N
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⇣aN < ⇣dimN = N(2� ⇠)

for the perturbation theory discussed in Sec. II.E.5.
Similar numerical support for the expansion in 1/d has
been obtained in Mazzino and Muratore-Ginanneschi
(2001). Second, the curve close to !!2 is fitted with
reasonable accuracy by a(2"!)#b(2"!)3/2 for a
!0.06 and b!1.13. That is compatible with an expan-
sion in powers of (2"!)1/2 (Shraiman and Siggia, 1996),
where the first term is ruled out by the Schwartz in-
equality "4#2"2!2(2"!). Third, remark that the
anomalies are stronger in 2D than in 3D and their maxi-
mum shifts towards smaller ! as the dimension de-
creases. The former remark is in agreement with the
general idea which emerged in previous sections that
intermittency is associated with the particles staying
close to each other for times longer than expected. It is
indeed physically quite sensible that those processes are
favored by lowering the space dimensionality. The sec-
ond remark can be qualitatively interpreted as follows
(Frisch et al., 1998). Consider scalar fluctuations at a
given scale. The smaller-scale components of the veloc-
ity act like an effective diffusivity whilst its larger-scale
components affect the scalar as in the Batchelor regime.
Neither of them leads to any anomalous scaling of the
scalar. Those nonlocal interactions are dominant as !
→0 and !→2, respectively. For intermediate values of !
the velocity components having a scale comparable to
that of the scalar fluctuations become important and in-
termittency is produced. The strongest anomalies are at-
tained when the relevant interactions are mostly local.
To qualitatively explain how the maximum of the
anomalies moves with the space dimensionality, it is then
enough to note that the effective diffusivity increases
with d but not the large-scale stretching. As for the de-
pendence on the order of the moments, the maximum
moves toward smaller ! as N increases, see the 3D

curves for the sixth-order anomaly 3"2""6 (Mazzino
and Muratore-Ginanneschi, 2001). It is indeed natural
that higher moments are more sensitive to multiplicative
effects due to large-scale stretching than to additive ef-
fects of small-scale eddy diffusivity.

Let us now discuss the phenomenon of saturation, i.e.,
the fact that "N tend to a constant at large N . The orders
where saturation is taking place are expected to increase
with ! and diverge as !→0. It is then convenient to con-
sider small values of 2"! . On the other hand, approach-
ing the Batchelor limit too closely makes nonlocal ef-
fects important and the range of scales needed for
reliable measurements becomes huge. A convenient
tradeoff is that considered in Celani et al. (2000) with
the 3D cases 2"!!0.125, 0.16, and 0.25. For the first
value of ! it is found there that the fourth- and the sixth-
order exponents are the same within the error bars. The
curves for the other ! values show that the order of satu-
ration increases with 2"! , as expected. How do those
data constrain the "N curve? It follows from the Hölder
inequalities that the curve for N$6 must lie below the
straight line joining "4 and "6 . Furthermore, from the
results in Sec. III.A.3 we know that the spatial scaling
exponents in the forced and the decaying cases are the
same and independent of the scalar initial conditions.
For the unforced Eq. (92), the maximum value of $ can-
not increase with time. Taking an initial condition with a
finite maximum value, we have the inequality SN(r ,t)
#(2 max $)pSN"p(r,t). We conclude that the "N curve
cannot decrease with the order. The presence of error
bars makes it, of course, impossible to state rigorously
that the "N curves tend to a constant. It is, however,
clear that the combination of the numerical data in
Celani et al. (2000) and the theoretical arguments dis-
cussed in Sec. III.C.2 leaves little doubt about the satu-
ration effect in the Kraichnan model. The situation with
an arbitrary velocity field is the subject of Sec. III.F.

E. Inverse cascade in the compressible Kraichnan model

The uniqueness of the Lagrangian trajectories dis-
cussed in Sec. II.D for the strongly compressible Kraich-
nan model has its counterpart in an inverse cascade of
the scalar field, that is, in the appearance of correlations
at larger and larger scales. Moreover, the absence of dis-
sipative anomaly allows us to calculate analytically the
statistics of scalar increments and to show that intermit-
tency is suppressed in the inverse cascade regime. In
other words, the scalar increment PDF tends at long
times to a scale-invariant form.

Let us first discuss the simple physical reasons for
those results. The absence of a dissipative anomaly is an
immediate consequence of the expression (101) for the
scalar correlation functions. If the trajectories are
unique, particles that start from the same point will re-
main together throughout the evolution and all the mo-
ments %$N&(t) are preserved. Note that the conservation
laws are statistical: the moments are not dynamically
conserved in every realization, but their average over
the velocity ensemble are.

FIG. 5. The fourth-order anomalous exponent 2"2""4 of the
scalar field vs the roughness parameter ! of the velocity field in
the Kraichnan model. The circles and the stars refer to the
three-dimensional and the two-dimensional cases, respectively.
The dashed lines are the perturbative predictions for small !
and 2"! in 3D.
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⇠ ! 0 Perturbation around Brownian 

motion

and a matching with the regular perturbation expansion
for a general geometry is thus needed. Second, for al-
most smooth velocities, close particles separate very
slowly and their collective behavior is masked by this
effect which leads to an accumulation of zero modes
with very close scaling dimensions. We shall start by the
more regular cases of small ! and large d . The scaling of
the irreducible four-point zero mode with the lowest di-
mension was first calculated to the linear order in ! by
Gawȩdzki and Kupiainen (1995) by a version of degen-
erate Rayleigh-Schrödinger perturbation theory. In par-
allel, a similar calculation in the linear order in 1/d was
performed by Chertkov et al. (1995b). Bernard et al.
(1996) streamlined the small ! analysis and generalized
it to any even order, following a similar generalization
by Chertkov and Falkovich (1996) for the 1/d expansion.
We sketch here the main lines of those calculations.

As we discussed in Sec. II.E.3, the operator M̃N is
reduced to the Laplacian (74) for !!0. The zero modes
of the Laplacian depend on the size of the particle con-
figuration as Rj and on its shape as the eigenfunctions of
“!̂ 2 with angular momentum j . The zero modes invariant
under d-dimensional translations, rotations, and reflec-
tions can be reexpressed as polynomials in Rnm

2 . For
even N , the irreducible zero modes with the lowest scal-
ing dimension have the form

fN ,0"R" #!R12
2 R34

2 ¯R(N"1)N
2 #$¯% , (81)

where $¯% denotes a combination of terms that depend
on the positions of (N"1) or less particles. For four
particles, the zero mode is 2(d#2)R12

2 R34
2 "d(R12

4

#R34
4 ), our recurrent example. The terms $¯% are not

uniquely determined since any degree N zero mode for
a smaller number of points might be added. Further-
more, permutations of the points in fN ,0 give other zero
modes so that we may symmetrize the above expressions
and look only at the permutation-invariant modes. The
scaling dimension &N ,0 of fN ,0 is clearly equal to N . This
linear growth signals the absence of attractive effects
between the particles diffusing with a constant diffusiv-
ity (no particle binding in the shape evolution). As we
shall see in Sec. III.C.1, this leads to the disappearance
of the intermittency in the advected scalar field, that be-
comes Gaussian in the limit !→0.

To the linear order in !, the operator M̃N will differ
from the Laplacian by a second-order differential opera-
tor "!V , involving logarithmic terms 'ln(rnm). The zero
mode and its scaling dimension are expanded as f0
#!f1 and N#!&1 , respectively. The lowest order term
f0 is given by the symmetrization of Eq. (81). As usual in
such problems, the degeneracy hidden in $¯% may be
lifted by the perturbation that fixes f0 for each zero
mode, see below. At the first order in !, the equations
that define the zero modes and their scaling dimension
reduce to the relations

“! 2f1!Vf0 , "R(R"N #f1!&1f0 . (82)

Given an arbitrary zero mode f0 , one shows that the
first equation admits a solution of the form f1!h

#)n$mhnm ln(rnm) with O(d)-invariant, degree N poly-
nomials hnm and h , the latter being determined up to
zero modes of “! 2. Note that the function (R(R"N)f1
!)n$mhnm is also annihilated by the Laplacian

“! 2"R(R"N #f1!"R(R"N#2 #“! 2f1

!"R(R"N#2 #Vf0

!"$R(R ,V%#2V #f0#V"R(R"N #f0

!0. (83)

The last equality follows from the scaling of f0 and the
fact that the commutators of R(R with M̃N and V are
(!"2)M̃N and "“! 2"2V , respectively. One obtains this
way a linear map * on the space of the degree N zero
modes of the Laplacian: *f0!(R(R"N)f1 . The second
equation in Eq. (82) states that f0 must be chosen as an
eigenstate of the map *. Furthermore, the function
should not belong to the subspace of unit codimension
of the zero modes that do not depend on all the points.
It is easy to see that such subspace is preserved by the
map *. As the result, the eigenvalue &1 is equal to the
ratio between the coefficients of R12

2 R34
2 ¯R(N"1)N

2 in
*f0 and in f0 . The latter is easy to extract, see Bernard
et al. (1996) for the details, and yields the result &1!
" N(N#d)/2(d#2) or, equivalently,

&N ,0!
N
2 "2"!#"

N"N"2 #

2"d#2 #
!#O"!2#, (84)

giving the leading correction to the scaling dimension of
the lowest irreducible zero mode. Note that to that or-
der &N ,0 is a concave function of N . Higher-order terms
in ! have been analyzed in Adzhemyan et al. (1998) (the
second order) and in Adzhemyan et al. (2001) (the third
order). The latter papers used a renormalization group
resummation of the small ! perturbative series for the
correlation functions of the scalar gradients in conjunc-
tion with an operator product expansion; see Sec.
III.C.1. The expression (84) may be easily generalized to
the compressible Kraichnan ensemble of compressibility
degree #. The correction &1 for the tracer exponent
picks up an additional factor (1#2#) (Gawȩdzki and
Vergassola, 2000). Higher-order corrections may be
found in Antonov and Honkonen (2001). The behavior
of the density correlation functions was analyzed in
Adzhemyan and Antonov (1998), Gawȩdzki and Vergas-
sola (2000), and Antonov and Honkonen (2001).

For large dimensionality d , it is convenient to use the
variables xnm!Rnm

2"! as the independent coordinates6 to
make the d dependence in M̃N explicit. Up to higher
orders in 1/d , the operator M̃N'L" (1/d) U , where L
!d"1)n$m$(d"1)(xnm

#(2"!)xnm(xnm

2 % and U is a
second-order d-independent differential operator mix-
ing derivatives over different xnm . We shall treat L as

6Their values are restricted only by the triangle inequalities
between the interparticle distances.
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d ! 1

the unperturbed operator and ! (1/d) U as a perturba-
tion. The inclusion into L of the diagonal terms ! 1/d
makes the unperturbed operator of the same (second)
order in derivatives as the perturbation and renders the
perturbative expansion less singular. The irreducible
zero modes of L with the lowest dimension are given by
an expression similar to Eq. (81):

fN ,0"R! #"x12x34¯x(N!1)N#$¯% , (85)

and the permutations thereof. Their scaling dimension is
(N/2)(2!&). For N"4, one may, for example, take f4,0
"x12x34! $d!1/2(2!&)% (x12

2 #x34
2 ). As in the & expan-

sion, in order to take into account the perturbation U ,
one has to solve the equations

Lf1"Uf0 , ! '
n$m

xnm(xnm
!

N
2 " f1"

)1

2!&
f0 . (86)

One checks again that *f0+('n$mxnm(xnm
! N/2)f1 is

annihilated by L. In order to calculate )1 , it remains to
find the coefficient of x12¯x(N!1)N in *f0 . In its depen-
dence on the x’s, the function Uf0 scales with power
(N/2 !1). One finds f1 by applying the inverse of the
operator L to it. *f0 is then obtained by gathering the
coefficients of the logarithmic terms in f1 ; see Chertkov
et al. (1995b) for the details. When d→, , the operator
L reduces to the first order one L!+'n$m(xnm

. This sig-
nals that the particle evolution becomes deterministic at
d", , with all xnm growing linearly in time. If one is
interested only in the 1/d correction to the scaling expo-
nent and not in the zero mode, then it is possible to use
directly the more natural (but more singular) decompo-
sition M̃N!L!! (1/d)U!. The leading zero modes of L!
also have the form (85). Noting that L! is a translation
operator, the zero mode *!f0 may be obtained as the
coefficient of the logarithmically divergent term in
-0

,U!f0(xnm!t)dt ; see Chertkov and Falkovich (1996).
In both approaches, the final result is

)N ,0"
N
2 "2!&#!

N"N!2 #

2d
&#O! 1

d2" , (87)

which is consistent with the small & expression (84).
The nonisotropic zero modes, as well as those for odd

N , may be studied similarly. The zero modes of fixed
scaling dimension form a representation of the rotation
group SO(d) which may be decomposed into irreducible
components. In particular, one may consider the compo-
nents corresponding to the symmetric tensor products of
the defining representation of SO(d), labeled by the an-
gular momentum j (the multiplicity of the tensor prod-
uct). For two particles, no other representations of
SO(d) appear. The two-point operator M̃2 becomes in
each angular momentum sector an explicit second-order
differential operator in the radial variable. It is then
straightforward to extract the scaling dimensions of its
zero modes:

)2,0
j "!

d!2#&

2

#
1
2
!"d!2#&#2#

4"d!1#&#j" j#d!2 #

d!1
.

(88)

Note that )2,0
1 "1 in any d corresponding to linear zero

modes. For the three-point operator, the lowest scaling
dimensions are )3,0

0 "4! $2(d!2)/(d!1)% &#O(&2)
(Gat et al., 1997; Gat, L’vov, and Procaccia, 1997) and
)3,0

1 "3! (d#4)/(d#2) &#O(&2) (Pumir, 1996, 1997) or
)3,0

1 "3!&! 2&/d #O(1/d2) (Gutman and Balkovsky,
1996). For even N and j , the generalization of Eq. (84)
takes the form (Antonov, 1999, 2000; Arad, L’vov, et al.,
2000; Wiese, 2000)

)N ,0
j "

N
2 "2!&#!! N"N!2 #

2"d#2 #
!

j" j#d!2 #"d#1 #

2"d#2 #"d!1 # " &

#O"&2#. (89)

The effective expansion parameter in the small & or
large d approach turns out to be N&/$(2!&)d% so that
neither of them is applicable to the region of the almost
smooth velocity fields. This region requires a different
perturbative technique exploiting the numerous symme-
tries exhibited by the multiparticle evolution in the lim-
iting case &"2. Those symmetries were first noticed and
employed to derive an exact solution for the zero modes
by Shraiman and Siggia (1996). The expression of the
multiparticle operators at &"2 reads

M̃N"D1$dH2!"d#1 #J2% , (90)

with H2"' ijHijHji and J2"!' i$jJ ij
2 denoting the Ca-

simir operators of the group SL(d) and of its SO(d)
subgroup acting on the index i"1, . . . ,d of the particle
positions rn

i . The corresponding generators are given by
Hij"'n$!rn

i .rn
j # (1/d)/ ij(rn

k.rn
k)% and Jij"Hij!Hji .

The relation (90), that may be easily checked directly, is
consistent with the expression (68) for the heat kernel of
M̃N . As mentioned in Sec. II.B.1, the right-hand side of
Eq. (90) is indeed the generator of the diffusion process
W(t) on the group SL(d). In their analysis, Shraiman
and Siggia (1995) employed an alternative expression
for the multiparticle operators, exhibiting yet another
symmetry of the smooth case:

M̃N"D1! dG2!"d#1 #J2#
d!N#1

N!1
0"0#dN# " ,

(91)

where G2"'n ,m"1
N!1 GnmGmn is the quadratic Casimir of

SL(N!1) acting on the index n"1, . . . ,N!1 of the dif-
ference variables rnN

i and 0"' i ,nrn
i .rn

i is the generator
of the overall dilations. For three points, one may then
decompose the scaling translationally invariant functions
into the eigenfunctions of G2, L2 and other generators
commuting with the latter and with 0. The zero modes
of M̃3 at &"2 have the lowest scaling dimension equal
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⇠ ! 2 Perturbation around Batchelor 

limit

also found anomalous 

exponents for zero modes



Physical (Lagrangian) interpretation of zero modes

3

where [m̂] means missing term. The above term can be understood as coming from Wick expansion of the products
of the forcing terms.

As for N = 2 doing the time derivative one obtains

@tCN = MNCN + (CN�2 ⌦ �) (18)

clearly this is a recursive equation which allows to compute all correlation functions, no closure problem as the passive
scalar is a linear problem.

III. SUMMARY

We have the N -particle propagator PN = PN (r; s|R; t) evolving as:

@tPN = MNPN (19)

and the N -point equal-time correlation function CN (R; t) evolving as:

@tCN = MNCN + CN�2 ⌦ � (20)

This structure can be proved for a special velocity field (the so-called Kraichnan ensemble) which comprises Gaus-
sian, time uncorrelated velocity fields for which:

hv↵(x, t)v�(x+ r, t0)iv = �(t� t0)D↵,�(x� y) (21)

In particular, by choosing:

D↵,�(r) = D0�↵� � d↵�(r) (22)

with d↵�(r) taking (in the inertial range) ⌘ ⌧ r ⌧ Lv the scaling form

d↵,�(r) = D1r
⇠
⇣
(d� 1 + ⇠)�↵� � ⇠

r↵r�
r2

⌘
(23)

For such flow the operator MN takes the form

MN = �
X

n<m

d↵�(rn � rm)@rn,↵@rm,� + 
NX

n=1

�rn

H
H

H
H
H

H
H
H

+D0�↵�

NX

n=1

@2
rn,↵

(24)

where the last term drops for spatially invariant functions.

IV. SCALING AND ZERO MODES

By inspection it is easy to see that in the limit , r ! 0 and L ! 1: the operator has dimension

[MN ] = L⇠�2

Thus time T ⇠ [MN ]�1 ⇠ L2�⇠ indeed ⇠ = 0 T ⇠ L2 as we recover normal di↵usion.
Also notice that we do expect to reach a statistically stationary state, so to determine the N -points correlation

function we need to solve the statinary problem:

�MNCN = CN�2 ⌦ � (25)

In the following lets readsorb the � in the definitin of MN

Dimensional Scaling of the correlation function
In the limit r ! 0 we can write

M2C2 ⇠ �(0) =) [C2] = [M2]
�1 = L2�⇠ ⇠ C(r) ⇠ r2�⇠

Kraichnan model
Time reversible

Lagrangian trajectories are reversible

Backward and Forward  
probabilities coincide

4

M4C4 ⇠ �(0)C2 =) [C4] = [M4]
�1[C2] = L2(2�⇠)

...

MNCN ⇠ �(0)CN�2 =) [CN ] = [MN ]�1[CN�2] = LN(2�⇠)

So the scaling is always dimensiona?

Zero Modes Dominance
The scaling arguments presented above are just based on the inhomogeneous solution of the PDE defining the CN

the most general solution of

�MNCN = CN�2 ⌦ � (26)

is

CN (r) = Cinhom
N (r) + ZN (r) (27)

where

MNZN = 0

are the ZERO MODES. Now if ZN is a scaling function with exponents smaller than the dimensional one ⇣dim =
N(2� ⇠) it will dominate the scaling.

N.B. Zero modes require matching with the inhomogeneous solution and thus matching with the “boundary
conditions” imposed by the forcing and velocity length scales, this will not anyway a↵ect the scaling but just the
multiplicative costants.

Lagrangian (Physical) interpretation of the Modes Dominance
OBSERVATION: Since, in the Kraichnan flow v(x, t) is time-reversal invariant (thanks to the delta correlation in
time), the backward and forward probability distribution functions coincide and evolve with the same operator.

We now consider the so-called Lagrangian average, given a function of N points f(x) we can define its Lagrangian
average as

hfi(t;x0) =

Z
dxPN (x, t|x0, 0)f(x) (28)

such averages allow to test the Lagrangian dynamics. Consider now a scaling function f(�x) = ��f(x) what do we
expect for its time growth? For a generic function,

hfi(t;x0) ⇠ t�/(2�⇠) (29)

e.g. f(x1,x2) = ||x1 � x2||2 = R2 then we are just doing Richardson dispersion and hfi(t;x0)i ⇠ t2/(2�xi (⇠ = 0 !
R2 ⇠ t Brownian di↵usion).

In general a configuration of N -points define a shape and a size: the size is e.g. R = (
P

n<m R2
nm)1/2 and the

shape R/R, for generic function the lagrangian average leads to a time growth inherited by the growth of the size
with time, as exemplified before. Let’s now consider the Lagrangian average of zero modes:

hZN i(t;x0) =

Z
dxPN (x, t|x0, 0)ZN (x) (30)

by doing the time derivative one realizes that

d

dt
hZN i(t;x0) =

Z
dx@tPN (x, t|x0, 0)ZN (x) = hMNZN i(t|0,x0) = 0! (31)

So zero modes are functions which are statistically conserved by the Lagrangian flow. Example for ⇠ = 0 zero modes
are function that annihilate under the application of the Laplacian, and are known as Harmonic Polynomials e.g.

hR2
12 �R2

34i = hR2
12i � hR2

34i = (R2
12(0) + 2Dt)� (R2

34(0) + 2Dt) = const
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f(x)For any test function            of N points we can define the Lagrangian averages

4

M4C4 ⇠ �(0)C2 =) [C4] = [M4]
�1[C2] = L2(2�⇠)

...

MNCN ⇠ �(0)CN�2 =) [CN ] = [MN ]�1[CN�2] = LN(2�⇠)

So the scaling is always dimensiona?

Zero Modes Dominance
The scaling arguments presented above are just based on the inhomogeneous solution of the PDE defining the CN

the most general solution of

�MNCN = CN�2 ⌦ � (26)

is

CN (r) = Cinhom
N (r) + ZN (r) (27)

where

MNZN = 0

are the ZERO MODES. Now if ZN is a scaling function with exponents smaller than the dimensional one ⇣dim =
N(2� ⇠) it will dominate the scaling.

N.B. Zero modes require matching with the inhomogeneous solution and thus matching with the “boundary
conditions” imposed by the forcing and velocity length scales, this will not anyway a↵ect the scaling but just the
multiplicative costants.

Lagrangian (Physical) interpretation of the Modes Dominance
OBSERVATION: Since, in the Kraichnan flow v(x, t) is time-reversal invariant (thanks to the delta correlation in
time), the backward and forward probability distribution functions coincide and evolve with the same operator.

We now consider the so-called Lagrangian average, given a function of N points f(x) we can define its Lagrangian
average as

hfi(t;x0) =

Z
dxPN (x, t|x0, 0)f(x) (28)

such averages allow to test the Lagrangian dynamics. Consider now a scaling function f(�x) = ��f(x) what do we
expect for its time growth? For a generic function,

hfi(t;x0) ⇠ t�/(2�⇠) (29)

e.g. f(x1,x2) = ||x1 � x2||2 = R2 then we are just doing Richardson dispersion and hfi(t;x0)i ⇠ t2/(2�xi (⇠ = 0 !
R2 ⇠ t Brownian di↵usion).

In general a configuration of N -points define a shape and a size: the size is e.g. R = (
P

n<m R2
nm)1/2 and the

shape R/R, for generic function the lagrangian average leads to a time growth inherited by the growth of the size
with time, as exemplified before. Let’s now consider the Lagrangian average of zero modes:

hZN i(t;x0) =

Z
dxPN (x, t|x0, 0)ZN (x) (30)

by doing the time derivative one realizes that

d

dt
hZN i(t;x0) =

Z
dx@tPN (x, t|x0, 0)ZN (x) = hMNZN i(t|0,x0) = 0! (31)

So zero modes are functions which are statistically conserved by the Lagrangian flow. Example for ⇠ = 0 zero modes
are function that annihilate under the application of the Laplacian, and are known as Harmonic Polynomials e.g.

hR2
12 �R2

34i = hR2
12i � hR2

34i = (R2
12(0) + 2Dt)� (R2

34(0) + 2Dt) = const

If f is a scaling function we expect

4
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So the scaling is always dimensiona?

Zero Modes Dominance
The scaling arguments presented above are just based on the inhomogeneous solution of the PDE defining the CN

the most general solution of

�MNCN = CN�2 ⌦ � (26)

is

CN (r) = Cinhom
N (r) + ZN (r) (27)

where

MNZN = 0

are the ZERO MODES. Now if ZN is a scaling function with exponents smaller than the dimensional one ⇣dim =
N(2� ⇠) it will dominate the scaling.

N.B. Zero modes require matching with the inhomogeneous solution and thus matching with the “boundary
conditions” imposed by the forcing and velocity length scales, this will not anyway a↵ect the scaling but just the
multiplicative costants.

Lagrangian (Physical) interpretation of the Modes Dominance
OBSERVATION: Since, in the Kraichnan flow v(x, t) is time-reversal invariant (thanks to the delta correlation in
time), the backward and forward probability distribution functions coincide and evolve with the same operator.

We now consider the so-called Lagrangian average, given a function of N points f(x) we can define its Lagrangian
average as

hfi(t;x0) =

Z
dxPN (x, t|x0, 0)f(x) (28)

such averages allow to test the Lagrangian dynamics. Consider now a scaling function f(�x) = ��f(x) what do we
expect for its time growth? For a generic function,

hfi(t;x0) ⇠ t�/(2�⇠) (29)

e.g. f(x1,x2) = ||x1 � x2||2 = R2 then we are just doing Richardson dispersion and hfi(t;x0)i ⇠ t2/(2�xi (⇠ = 0 !
R2 ⇠ t Brownian di↵usion).

In general a configuration of N -points define a shape and a size: the size is e.g. R = (
P

n<m R2
nm)1/2 and the

shape R/R, for generic function the lagrangian average leads to a time growth inherited by the growth of the size
with time, as exemplified before. Let’s now consider the Lagrangian average of zero modes:

hZN i(t;x0) =

Z
dxPN (x, t|x0, 0)ZN (x) (30)

by doing the time derivative one realizes that

d

dt
hZN i(t;x0) =

Z
dx@tPN (x, t|x0, 0)ZN (x) = hMNZN i(t|0,x0) = 0! (31)

So zero modes are functions which are statistically conserved by the Lagrangian flow. Example for ⇠ = 0 zero modes
are function that annihilate under the application of the Laplacian, and are known as Harmonic Polynomials e.g.

hR2
12 �R2

34i = hR2
12i � hR2

34i = (R2
12(0) + 2Dt)� (R2

34(0) + 2Dt) = const

e.g. Relative dispersion 
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�1[C2] = L2(2�⇠)
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⇥(x, t) = ✓(x, t) + g · x

The second issue associated to the presence of cliffs
concerns their role for the statistics of scalar differ-
ence strong fluctuations, i.e. to the behavior of high-
order structure functions. In particular, scalar variations
across the cliffs are comparable to the root-mean-square
(rms) value of the scalar. This suggests that scalar struc-
ture function scaling exponents might saturate, that is
tend to a constant for large enough orders. The ques-
tion of saturation was first raised in Ref. [19]. Here, we
shall provide evidence for saturation in two different sit-
uations : scalar advection by a two-dimensional Navier–
Stokes velocity field in the inverse cascade regime and
in the three-dimensional Kraichnan model [19]. As dis-
cussed in the sequel, the latter model represents the least
favorable case to observe saturation, because of the ve-
locity short correlation time. The fact that saturation is
still observed points to the genericity of the phenomenon
for scalar turbulence.
The paper is organized as follows. In Sections II

and III, we recall some well-known results about the
expected classical laws for the decay of anisotropies
in scalar turbulence and the properties of the Navier-
Stokes two-dimensional inverse energy cascade, respec-
tively. Anisotropies and scalar turbulence universality
are discussed in Section IV, while the results about sat-
uration are presented in Section V. The successive Sec-
tion investigates ramp-and-cliff structure dynamical pro-
cesses. The aim is to clarify whether the observed satura-
tion arises from ‘mature’ cliffs, having thicknesses compa-
rable to the dissipative scale, or from ‘non-mature’ ones,
still in the process of steepening. Section VII reports re-
sults on the scalar statistics inside the “plateaux”. Scalar
dissipation is the subject of Section VIII, and the results
on scalar fluxes, involving joint velocity-scalar correla-
tions, are discussed in Section IX. The last Section is
devoted to conclusions.

II. THE CLASSICAL THEORY OF SCALAR

TURBULENCE

The advection-diffusion partial differential equation
governing the evolution of a passive scalar field T (r, t)
is :

∂tT (r, t) + v(r, t) ·∇T (r, t) = κ∆T (r, t). (1)

Here, v(r, t) is the incompressible advecting velocity field
and κ is the molecular diffusivity. The “energy” T 2 is
statistically conserved by the advection term in (1) and
dissipated by the viscous term. In order to attain a sta-
tionary state it is thus necessary to inject scalar fluctua-
tions. The simplest way is to add a forcing term f(r, t)
to the right-hand side (rhs) of (1). A convenient choice
that we shall use in this work is to take the forcing f
random, Gaussian, statistically homogeneous, isotropic,
white in time, of zero mean and correlation function

〈f(r, t) f(0, 0)〉 = χ (r/Lf ) δ(t). (2)

The correlation χ (r/Lf) is concentrated at the forcing
integral scale Lf and rapidly decreases for r $ Lf .
An alternative injection mechanism, closer to typical
experimental situations, is to maintain a mean scalar
gradient g. Scalar fluctuations θ superimposed on it,
T (r, t) ≡ θ(r, t) + g · r, obey the equation of motion :

∂tθ(r, t) + v(r, t) ·∇ θ(r, t) = κ∆θ(r, t)− g · v. (3)

Note that the mean gradient injection mechanism selects
by its very definition a preferential direction in the system
and isotropy is thus broken.
We shall be interested in the passive scalar structure

functions

Sn(r) ≡ 〈[T (x+ r, t)− T (x, t)]n〉 ≡ 〈(δrT )
n〉, (4)

where 〈 〉 denotes the average over the velocity, and pos-
sibly the forcing, ensemble. The reason to focus on cor-
relations of the field T rather than those of the field θ
is explained in Appendix A. Throughout this work we
assume the velocity to be scale-invariant, at least in the
scalar inertial range of scales defined by η ' |r| ' L.
Here, η is the scalar dissipation scale and L is the scalar
integral scale. For the mean-gradient injection, L is com-
parable to the velocity integral scale. For the randomly
forced case, we shall consider situations where the veloc-
ity integral scale is comparable (or even larger) than the
forcing one and therefore L ( Lf . On account of these
assumptions, the scalar structure functions are expected
to have a scaling behavior in the inertial range of scales.
For the isotropic randomly forced case, odd orders vanish
by symmetry. For the injection by a mean gradient, both
even and odd-order structure functions are non-zero.
For even-order structure functions, the classical predic-

tion of the Kolmogorov–Obukhov–Corrsin (KOC) theory
is :

S2n(r) = C2nε
n
θ ε

−n/3
v r2n/3

(

L

r

)ρn

∝ rζ2n , (5)

with ζ2n = 2n/3 and the anomaly ρ2n ≡ 2n/3− ζ2n = 0.
In the previous formula, εθ ≡ κ〈(∇θ)2〉 is the mean scalar
energy dissipation, C2n are non-dimensional constants
and the velocity is assumed to be of Kolmogorov-type,
with velocity increments 〈(δrv)n〉 ∝ rn/3 and a finite en-
ergy flux εv. The same arguments can be reformulated
along the same lines for other types of velocity fields.
Dimensional arguments are easily extended to odd-

order moments in the presence of a mean gradient g [22].
The balance between the advection term and the injec-
tion term on the rhs of (3) gives indeed

S2n+1(r) ∼ (g · r)S2n(r) ∝ rζ2n+1 , (6)

with ζ2n+1 = 2n/3 + 1. The classical prediction for the
decay rate of hyperskewnesses Rn is then :

Rn ≡
S2n+1

Sn+1/2
2

∝ r2/3 n = 1, 2, · · · (7)
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scale, defined in Section III, and of the box size, respec-
tively. They are thus comparable. Similar subgaussian
behaviors were also observed in [35].
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FIG. 5. The Pdf’s of the scalar field normalized by its stan-
dard deviation for the two cases of random forcing (upper
curve, multiplied by a factor 102 for plotting purposes) and
injection by a mean gradient (lower curve). Note the pres-
ence of subgaussian tails for the latter (Gaussian densities
are shown for comparison as dotted lines).

Let us move then to the small-scale statistics by consid-
ering scalar increments. In Fig. 6, we present the proba-
bility density functions for the two injection mechanisms :
it is clear that they do not have the same shape and
the same conclusion holds if we take only the symmet-
ric part of the pdf’s. A particular consequence is that
structure functions cannot have a universal expression,
as postulated in the classical theory. It is however di-
rectly checked from Fig. 7 that the scaling exponents are
the same for the two types of injection. This implies that
the pdf’s, although having different shapes, rescale with
r in the same way.
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FIG. 6. Pdf’s of scalar increments normalized by their stan-
dard deviations for three separations r = 2.5× 10−2, 5× 10−2,
10−1 in the inertial range.

The scaling exponents being universal, the depen-
dence on the large-scale injection conditions shows up

in the structure function dominant expression Sn(r) =

Cnε
n/2
θ ε−n/6

v rn/3(L/r)n/3−ζn via the non-dimensional
constants Cn. The resulting picture of universality is
the following : structure function scaling exponents are
independent of the injection details and thus universal ;
scalar and scalar increment pdf’s, and non-dimensional
constants in the structure functions are not. A particu-
lar instance is the one of odd-order structure functions,
where the coefficients C2n+1 vanish or not, depending on
the symmetries of the injection mechanisms. This form
of universality is weaker than the one in the original clas-
sical KOC theory and agrees with the remark made by
L.D. Landau about the universality in Kolmogorov 1941
theory for fully developed turbulence. Remark finally
that this universality framework is the same as the one
arising from the zero mechanism in the Kraichnan passive
scalar model [36–38].
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FIG. 7. Low-order even structure functions. Local scaling
exponents are shown in the inset. The measured exponents
are ζ2 = 0.66± 0.03, ζ4 = 0.95 ± 0.04 and ζ6 = 1.11± 0.04.

V. SATURATION OF INTERMITTENCY

The cliffs observed in scalar fields are strikingly sugges-
tive of quasi-discontinuities. When smaller and smaller
molecular diffusivities are considered, the minimal width
of the fronts shrinks with the dissipation scale, with their
maximum amplitude remaining comparable to the scalar
rms value. Simple phenomenology suggests that the pres-
ence of such structures, corresponding to a local Hölder
exponent equal to zero, might induce a vanishing slope in
the structure function scaling exponent curve. The fronts
being the strongest possible events, this behavior should
take place for large enough orders, whence the possible
saturation ζn → const for high n’s.
The first and most natural way to investigate the satu-

ration is to look directly at the scalar structure function
scaling exponents. An alternative procedure consists in
looking, for a fixed δrT , at how the pdf P(δrT ) of the
scalar differences varies with the separation r. The lat-
ter is statistically more reliable than the former as less
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This filtering is much more economic as it can be per-
formed by a single measurement along φ = π/4 for even
orders and φ = π/6 for odd-order structure functions.
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FIG. 3. The 3rd and the 5th-order parallel structure func-
tions for the injection by a mean gradient. In the inset, local
scaling exponents dSn(r)/d log r. The measured exponents
are ζ3 = 1.25 ± 0.04, ζ5 = 1.38 ± 0.07, with error bars esti-
mated from rms fluctuations of local scaling exponents.

Let us now present the results concerning the
anisotropy decay rate, measured by odd-order structure
functions. In Fig. 3, we show the 3-rd and the 5-th or-
der structure functions. Accordingly, the skewness and
hyperskewness coefficients of scalar differences scale as

S3/S
3/2
2 ∼ r0.25, S5/S

5/2
2 ∼ r−0.2, (15)

the second-order scaling exponent being compatible,
within the error bars, with the dimensional value " 2/3
(see Fig. 7). Both behaviors (15) violate the dimensional
prediction (7). Furthermore, whilst the skewness is de-
caying, even though much more slowly than the expected
r2/3, the hyperskewness grows at small scales. The ef-
fect of memory of the large-scale injection conditions
observed in laboratory experiments is thus dramatically
present also in our numerical simulations. The fact that
clean scaling behaviors and exponents are measured here
gives a very strong indication in favor of the fact that we
are not dealing with a finite Péclet number effect. The
most natural conclusion stemming from experiments, the
previous and the present numerical simulations is that
isotropy is not restored in the full classical sense, no mat-
ter how large is the Péclet number.
It is worth discussing in some more detail the rela-

tion between this last conclusion and the observation
previously made on the subdominance of higher-order
anisotropic contributions to structure functions. The
problem comes of course from the presence of intermit-
tency : contrary to the classical theory, the pdf of scalar
differences P(δrT ) for various separations r cannot be
collapsed one onto another by a simple rescaling. Their
change of shape with the separation r makes it crucial
to specify how the anisotropy degree is quantified and
the amplitude of the fluctuations sampled in the pdf’s

at various r’s. The ratio S5/S
5/4
4 is for example decreas-

ing with r, contrary to the hyperskewness in (15). The
blow-up of the latter is thus a joined effect of anisotropy
and intermittency. The point to be remarked is that
odd-order structure functions are all scaling with ex-
ponents higher than those of structure functions of the
same order but calculated with the absolute values, e.g.
∫

|δrT |3P(δrT ) dδrT . In other words, when fluctuations
of similar amplitude are compared, anisotropic contri-
butions are subdominant with respect to the isotropic
ones. The same point is stressed in Fig. 4, where it is
shown that the ratio between the anti-symmetric and
the symmetric part of scalar increment pdf’s decreases
with r. Notwithstanding the conclusion on the absence
of isotropy restoration in the classical sense, it is thus
important to realize that anisotropic fluctuations become
more and more subdominant as their anisotropy degree
increases.
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FIG. 4. Ratio between the anti-symmetric and the sym-
metric part of scalar increment pdf’s P(δrT ) for four separa-
tions in the inertial range.

B. Universality

What is the degree of universality of scalar turbu-
lence with respect to the injection mechanisms? Is
the persistence of anisotropy just discussed signalling
that the scalar statistics is totally imprinted by the
non-universal large-scale injection conditions even at the
smallest scales? To answer these questions it is conve-
nient to compare observables, such as even-order struc-
ture functions or pdf’s themselves, that are meaningful
and non trivial for both types of injection.
Let us first start from the scalar field pdf. Even though

this is not a small-scale quantity, it is interesting that
the two curves are different and the one for the mean-
gradient injection is subgaussian, see Fig. 5. Note that
this is not in contradiction with the exponential behav-
ior predicted in [33,41,34]. The latter work considers in-
deed the situation where the velocity correlation length is
much smaller than the typical length of variation of the
large-scale mean scalar profile. In our case, these two
lengths are of the order of the velocity friction length
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This filtering is much more economic as it can be per-
formed by a single measurement along φ = π/4 for even
orders and φ = π/6 for odd-order structure functions.
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FIG. 3. The 3rd and the 5th-order parallel structure func-
tions for the injection by a mean gradient. In the inset, local
scaling exponents dSn(r)/d log r. The measured exponents
are ζ3 = 1.25 ± 0.04, ζ5 = 1.38 ± 0.07, with error bars esti-
mated from rms fluctuations of local scaling exponents.

Let us now present the results concerning the
anisotropy decay rate, measured by odd-order structure
functions. In Fig. 3, we show the 3-rd and the 5-th or-
der structure functions. Accordingly, the skewness and
hyperskewness coefficients of scalar differences scale as
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the second-order scaling exponent being compatible,
within the error bars, with the dimensional value " 2/3
(see Fig. 7). Both behaviors (15) violate the dimensional
prediction (7). Furthermore, whilst the skewness is de-
caying, even though much more slowly than the expected
r2/3, the hyperskewness grows at small scales. The ef-
fect of memory of the large-scale injection conditions
observed in laboratory experiments is thus dramatically
present also in our numerical simulations. The fact that
clean scaling behaviors and exponents are measured here
gives a very strong indication in favor of the fact that we
are not dealing with a finite Péclet number effect. The
most natural conclusion stemming from experiments, the
previous and the present numerical simulations is that
isotropy is not restored in the full classical sense, no mat-
ter how large is the Péclet number.
It is worth discussing in some more detail the rela-

tion between this last conclusion and the observation
previously made on the subdominance of higher-order
anisotropic contributions to structure functions. The
problem comes of course from the presence of intermit-
tency : contrary to the classical theory, the pdf of scalar
differences P(δrT ) for various separations r cannot be
collapsed one onto another by a simple rescaling. Their
change of shape with the separation r makes it crucial
to specify how the anisotropy degree is quantified and
the amplitude of the fluctuations sampled in the pdf’s

at various r’s. The ratio S5/S
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4 is for example decreas-

ing with r, contrary to the hyperskewness in (15). The
blow-up of the latter is thus a joined effect of anisotropy
and intermittency. The point to be remarked is that
odd-order structure functions are all scaling with ex-
ponents higher than those of structure functions of the
same order but calculated with the absolute values, e.g.
∫

|δrT |3P(δrT ) dδrT . In other words, when fluctuations
of similar amplitude are compared, anisotropic contri-
butions are subdominant with respect to the isotropic
ones. The same point is stressed in Fig. 4, where it is
shown that the ratio between the anti-symmetric and
the symmetric part of scalar increment pdf’s decreases
with r. Notwithstanding the conclusion on the absence
of isotropy restoration in the classical sense, it is thus
important to realize that anisotropic fluctuations become
more and more subdominant as their anisotropy degree
increases.
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B. Universality

What is the degree of universality of scalar turbu-
lence with respect to the injection mechanisms? Is
the persistence of anisotropy just discussed signalling
that the scalar statistics is totally imprinted by the
non-universal large-scale injection conditions even at the
smallest scales? To answer these questions it is conve-
nient to compare observables, such as even-order struc-
ture functions or pdf’s themselves, that are meaningful
and non trivial for both types of injection.
Let us first start from the scalar field pdf. Even though

this is not a small-scale quantity, it is interesting that
the two curves are different and the one for the mean-
gradient injection is subgaussian, see Fig. 5. Note that
this is not in contradiction with the exponential behav-
ior predicted in [33,41,34]. The latter work considers in-
deed the situation where the velocity correlation length is
much smaller than the typical length of variation of the
large-scale mean scalar profile. In our case, these two
lengths are of the order of the velocity friction length
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scale, defined in Section III, and of the box size, respec-
tively. They are thus comparable. Similar subgaussian
behaviors were also observed in [35].
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FIG. 5. The Pdf’s of the scalar field normalized by its stan-

dard deviation for the two cases of random forcing (upper
curve, multiplied by a factor 102 for plotting purposes) and
injection by a mean gradient (lower curve). Note the pres-
ence of subgaussian tails for the latter (Gaussian densities
are shown for comparison as dotted lines).

Let us move then to the small-scale statistics by consid-
ering scalar increments. In Fig. 6, we present the proba-
bility density functions for the two injection mechanisms :
it is clear that they do not have the same shape and
the same conclusion holds if we take only the symmet-
ric part of the pdf’s. A particular consequence is that
structure functions cannot have a universal expression,
as postulated in the classical theory. It is however di-
rectly checked from Fig. 7 that the scaling exponents are
the same for the two types of injection. This implies that
the pdf’s, although having different shapes, rescale with
r in the same way.
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FIG. 6. Pdf’s of scalar increments normalized by their stan-
dard deviations for three separations r = 2.5× 10−2, 5× 10−2,
10−1 in the inertial range.

The scaling exponents being universal, the depen-
dence on the large-scale injection conditions shows up

in the structure function dominant expression Sn(r) =

Cnε
n/2
θ ε−n/6

v rn/3(L/r)n/3−ζn via the non-dimensional
constants Cn. The resulting picture of universality is
the following : structure function scaling exponents are
independent of the injection details and thus universal ;
scalar and scalar increment pdf’s, and non-dimensional
constants in the structure functions are not. A particu-
lar instance is the one of odd-order structure functions,
where the coefficients C2n+1 vanish or not, depending on
the symmetries of the injection mechanisms. This form
of universality is weaker than the one in the original clas-
sical KOC theory and agrees with the remark made by
L.D. Landau about the universality in Kolmogorov 1941
theory for fully developed turbulence. Remark finally
that this universality framework is the same as the one
arising from the zero mechanism in the Kraichnan passive
scalar model [36–38].

10-4

10-3

10-2

10-1

100

101

102

103

104

10-3 10-2 10-1 1 101

r

n=2

n=4

n=6

S n
(r)

shear
random forced

0
0.5

1
1.5

2

0.01 0.1 1

 

FIG. 7. Low-order even structure functions. Local scaling
exponents are shown in the inset. The measured exponents
are ζ2 = 0.66± 0.03, ζ4 = 0.95 ± 0.04 and ζ6 = 1.11± 0.04.

V. SATURATION OF INTERMITTENCY

The cliffs observed in scalar fields are strikingly sugges-
tive of quasi-discontinuities. When smaller and smaller
molecular diffusivities are considered, the minimal width
of the fronts shrinks with the dissipation scale, with their
maximum amplitude remaining comparable to the scalar
rms value. Simple phenomenology suggests that the pres-
ence of such structures, corresponding to a local Hölder
exponent equal to zero, might induce a vanishing slope in
the structure function scaling exponent curve. The fronts
being the strongest possible events, this behavior should
take place for large enough orders, whence the possible
saturation ζn → const for high n’s.
The first and most natural way to investigate the satu-

ration is to look directly at the scalar structure function
scaling exponents. An alternative procedure consists in
looking, for a fixed δrT , at how the pdf P(δrT ) of the
scalar differences varies with the separation r. The lat-
ter is statistically more reliable than the former as less
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scale, defined in Section III, and of the box size, respec-
tively. They are thus comparable. Similar subgaussian
behaviors were also observed in [35].
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ence of subgaussian tails for the latter (Gaussian densities
are shown for comparison as dotted lines).

Let us move then to the small-scale statistics by consid-
ering scalar increments. In Fig. 6, we present the proba-
bility density functions for the two injection mechanisms :
it is clear that they do not have the same shape and
the same conclusion holds if we take only the symmet-
ric part of the pdf’s. A particular consequence is that
structure functions cannot have a universal expression,
as postulated in the classical theory. It is however di-
rectly checked from Fig. 7 that the scaling exponents are
the same for the two types of injection. This implies that
the pdf’s, although having different shapes, rescale with
r in the same way.
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The scaling exponents being universal, the depen-
dence on the large-scale injection conditions shows up

in the structure function dominant expression Sn(r) =

Cnε
n/2
θ ε−n/6

v rn/3(L/r)n/3−ζn via the non-dimensional
constants Cn. The resulting picture of universality is
the following : structure function scaling exponents are
independent of the injection details and thus universal ;
scalar and scalar increment pdf’s, and non-dimensional
constants in the structure functions are not. A particu-
lar instance is the one of odd-order structure functions,
where the coefficients C2n+1 vanish or not, depending on
the symmetries of the injection mechanisms. This form
of universality is weaker than the one in the original clas-
sical KOC theory and agrees with the remark made by
L.D. Landau about the universality in Kolmogorov 1941
theory for fully developed turbulence. Remark finally
that this universality framework is the same as the one
arising from the zero mechanism in the Kraichnan passive
scalar model [36–38].
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FIG. 7. Low-order even structure functions. Local scaling
exponents are shown in the inset. The measured exponents
are ζ2 = 0.66± 0.03, ζ4 = 0.95 ± 0.04 and ζ6 = 1.11± 0.04.

V. SATURATION OF INTERMITTENCY

The cliffs observed in scalar fields are strikingly sugges-
tive of quasi-discontinuities. When smaller and smaller
molecular diffusivities are considered, the minimal width
of the fronts shrinks with the dissipation scale, with their
maximum amplitude remaining comparable to the scalar
rms value. Simple phenomenology suggests that the pres-
ence of such structures, corresponding to a local Hölder
exponent equal to zero, might induce a vanishing slope in
the structure function scaling exponent curve. The fronts
being the strongest possible events, this behavior should
take place for large enough orders, whence the possible
saturation ζn → const for high n’s.
The first and most natural way to investigate the satu-

ration is to look directly at the scalar structure function
scaling exponents. An alternative procedure consists in
looking, for a fixed δrT , at how the pdf P(δrT ) of the
scalar differences varies with the separation r. The lat-
ter is statistically more reliable than the former as less
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⇥(x, t) = ✓(x, t) + g · x

The second issue associated to the presence of cliffs
concerns their role for the statistics of scalar differ-
ence strong fluctuations, i.e. to the behavior of high-
order structure functions. In particular, scalar variations
across the cliffs are comparable to the root-mean-square
(rms) value of the scalar. This suggests that scalar struc-
ture function scaling exponents might saturate, that is
tend to a constant for large enough orders. The ques-
tion of saturation was first raised in Ref. [19]. Here, we
shall provide evidence for saturation in two different sit-
uations : scalar advection by a two-dimensional Navier–
Stokes velocity field in the inverse cascade regime and
in the three-dimensional Kraichnan model [19]. As dis-
cussed in the sequel, the latter model represents the least
favorable case to observe saturation, because of the ve-
locity short correlation time. The fact that saturation is
still observed points to the genericity of the phenomenon
for scalar turbulence.
The paper is organized as follows. In Sections II

and III, we recall some well-known results about the
expected classical laws for the decay of anisotropies
in scalar turbulence and the properties of the Navier-
Stokes two-dimensional inverse energy cascade, respec-
tively. Anisotropies and scalar turbulence universality
are discussed in Section IV, while the results about sat-
uration are presented in Section V. The successive Sec-
tion investigates ramp-and-cliff structure dynamical pro-
cesses. The aim is to clarify whether the observed satura-
tion arises from ‘mature’ cliffs, having thicknesses compa-
rable to the dissipative scale, or from ‘non-mature’ ones,
still in the process of steepening. Section VII reports re-
sults on the scalar statistics inside the “plateaux”. Scalar
dissipation is the subject of Section VIII, and the results
on scalar fluxes, involving joint velocity-scalar correla-
tions, are discussed in Section IX. The last Section is
devoted to conclusions.

II. THE CLASSICAL THEORY OF SCALAR

TURBULENCE

The advection-diffusion partial differential equation
governing the evolution of a passive scalar field T (r, t)
is :

∂tT (r, t) + v(r, t) ·∇T (r, t) = κ∆T (r, t). (1)

Here, v(r, t) is the incompressible advecting velocity field
and κ is the molecular diffusivity. The “energy” T 2 is
statistically conserved by the advection term in (1) and
dissipated by the viscous term. In order to attain a sta-
tionary state it is thus necessary to inject scalar fluctua-
tions. The simplest way is to add a forcing term f(r, t)
to the right-hand side (rhs) of (1). A convenient choice
that we shall use in this work is to take the forcing f
random, Gaussian, statistically homogeneous, isotropic,
white in time, of zero mean and correlation function

〈f(r, t) f(0, 0)〉 = χ (r/Lf ) δ(t). (2)

The correlation χ (r/Lf) is concentrated at the forcing
integral scale Lf and rapidly decreases for r $ Lf .
An alternative injection mechanism, closer to typical
experimental situations, is to maintain a mean scalar
gradient g. Scalar fluctuations θ superimposed on it,
T (r, t) ≡ θ(r, t) + g · r, obey the equation of motion :

∂tθ(r, t) + v(r, t) ·∇ θ(r, t) = κ∆θ(r, t)− g · v. (3)

Note that the mean gradient injection mechanism selects
by its very definition a preferential direction in the system
and isotropy is thus broken.
We shall be interested in the passive scalar structure

functions

Sn(r) ≡ 〈[T (x+ r, t)− T (x, t)]n〉 ≡ 〈(δrT )
n〉, (4)

where 〈 〉 denotes the average over the velocity, and pos-
sibly the forcing, ensemble. The reason to focus on cor-
relations of the field T rather than those of the field θ
is explained in Appendix A. Throughout this work we
assume the velocity to be scale-invariant, at least in the
scalar inertial range of scales defined by η ' |r| ' L.
Here, η is the scalar dissipation scale and L is the scalar
integral scale. For the mean-gradient injection, L is com-
parable to the velocity integral scale. For the randomly
forced case, we shall consider situations where the veloc-
ity integral scale is comparable (or even larger) than the
forcing one and therefore L ( Lf . On account of these
assumptions, the scalar structure functions are expected
to have a scaling behavior in the inertial range of scales.
For the isotropic randomly forced case, odd orders vanish
by symmetry. For the injection by a mean gradient, both
even and odd-order structure functions are non-zero.
For even-order structure functions, the classical predic-

tion of the Kolmogorov–Obukhov–Corrsin (KOC) theory
is :

S2n(r) = C2nε
n
θ ε

−n/3
v r2n/3

(

L

r

)ρn

∝ rζ2n , (5)

with ζ2n = 2n/3 and the anomaly ρ2n ≡ 2n/3− ζ2n = 0.
In the previous formula, εθ ≡ κ〈(∇θ)2〉 is the mean scalar
energy dissipation, C2n are non-dimensional constants
and the velocity is assumed to be of Kolmogorov-type,
with velocity increments 〈(δrv)n〉 ∝ rn/3 and a finite en-
ergy flux εv. The same arguments can be reformulated
along the same lines for other types of velocity fields.
Dimensional arguments are easily extended to odd-

order moments in the presence of a mean gradient g [22].
The balance between the advection term and the injec-
tion term on the rhs of (3) gives indeed

S2n+1(r) ∼ (g · r)S2n(r) ∝ rζ2n+1 , (6)

with ζ2n+1 = 2n/3 + 1. The classical prediction for the
decay rate of hyperskewnesses Rn is then :

Rn ≡
S2n+1

Sn+1/2
2

∝ r2/3 n = 1, 2, · · · (7)

2
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by dimensional arguments

scale, defined in Section III, and of the box size, respec-
tively. They are thus comparable. Similar subgaussian
behaviors were also observed in [35].
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FIG. 5. The Pdf’s of the scalar field normalized by its stan-
dard deviation for the two cases of random forcing (upper
curve, multiplied by a factor 102 for plotting purposes) and
injection by a mean gradient (lower curve). Note the pres-
ence of subgaussian tails for the latter (Gaussian densities
are shown for comparison as dotted lines).

Let us move then to the small-scale statistics by consid-
ering scalar increments. In Fig. 6, we present the proba-
bility density functions for the two injection mechanisms :
it is clear that they do not have the same shape and
the same conclusion holds if we take only the symmet-
ric part of the pdf’s. A particular consequence is that
structure functions cannot have a universal expression,
as postulated in the classical theory. It is however di-
rectly checked from Fig. 7 that the scaling exponents are
the same for the two types of injection. This implies that
the pdf’s, although having different shapes, rescale with
r in the same way.
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FIG. 6. Pdf’s of scalar increments normalized by their stan-
dard deviations for three separations r = 2.5× 10−2, 5× 10−2,
10−1 in the inertial range.

The scaling exponents being universal, the depen-
dence on the large-scale injection conditions shows up

in the structure function dominant expression Sn(r) =

Cnε
n/2
θ ε−n/6

v rn/3(L/r)n/3−ζn via the non-dimensional
constants Cn. The resulting picture of universality is
the following : structure function scaling exponents are
independent of the injection details and thus universal ;
scalar and scalar increment pdf’s, and non-dimensional
constants in the structure functions are not. A particu-
lar instance is the one of odd-order structure functions,
where the coefficients C2n+1 vanish or not, depending on
the symmetries of the injection mechanisms. This form
of universality is weaker than the one in the original clas-
sical KOC theory and agrees with the remark made by
L.D. Landau about the universality in Kolmogorov 1941
theory for fully developed turbulence. Remark finally
that this universality framework is the same as the one
arising from the zero mechanism in the Kraichnan passive
scalar model [36–38].
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FIG. 7. Low-order even structure functions. Local scaling
exponents are shown in the inset. The measured exponents
are ζ2 = 0.66± 0.03, ζ4 = 0.95 ± 0.04 and ζ6 = 1.11± 0.04.

V. SATURATION OF INTERMITTENCY

The cliffs observed in scalar fields are strikingly sugges-
tive of quasi-discontinuities. When smaller and smaller
molecular diffusivities are considered, the minimal width
of the fronts shrinks with the dissipation scale, with their
maximum amplitude remaining comparable to the scalar
rms value. Simple phenomenology suggests that the pres-
ence of such structures, corresponding to a local Hölder
exponent equal to zero, might induce a vanishing slope in
the structure function scaling exponent curve. The fronts
being the strongest possible events, this behavior should
take place for large enough orders, whence the possible
saturation ζn → const for high n’s.
The first and most natural way to investigate the satu-

ration is to look directly at the scalar structure function
scaling exponents. An alternative procedure consists in
looking, for a fixed δrT , at how the pdf P(δrT ) of the
scalar differences varies with the separation r. The lat-
ter is statistically more reliable than the former as less
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This filtering is much more economic as it can be per-
formed by a single measurement along φ = π/4 for even
orders and φ = π/6 for odd-order structure functions.
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FIG. 3. The 3rd and the 5th-order parallel structure func-
tions for the injection by a mean gradient. In the inset, local
scaling exponents dSn(r)/d log r. The measured exponents
are ζ3 = 1.25 ± 0.04, ζ5 = 1.38 ± 0.07, with error bars esti-
mated from rms fluctuations of local scaling exponents.

Let us now present the results concerning the
anisotropy decay rate, measured by odd-order structure
functions. In Fig. 3, we show the 3-rd and the 5-th or-
der structure functions. Accordingly, the skewness and
hyperskewness coefficients of scalar differences scale as

S3/S
3/2
2 ∼ r0.25, S5/S

5/2
2 ∼ r−0.2, (15)

the second-order scaling exponent being compatible,
within the error bars, with the dimensional value " 2/3
(see Fig. 7). Both behaviors (15) violate the dimensional
prediction (7). Furthermore, whilst the skewness is de-
caying, even though much more slowly than the expected
r2/3, the hyperskewness grows at small scales. The ef-
fect of memory of the large-scale injection conditions
observed in laboratory experiments is thus dramatically
present also in our numerical simulations. The fact that
clean scaling behaviors and exponents are measured here
gives a very strong indication in favor of the fact that we
are not dealing with a finite Péclet number effect. The
most natural conclusion stemming from experiments, the
previous and the present numerical simulations is that
isotropy is not restored in the full classical sense, no mat-
ter how large is the Péclet number.
It is worth discussing in some more detail the rela-

tion between this last conclusion and the observation
previously made on the subdominance of higher-order
anisotropic contributions to structure functions. The
problem comes of course from the presence of intermit-
tency : contrary to the classical theory, the pdf of scalar
differences P(δrT ) for various separations r cannot be
collapsed one onto another by a simple rescaling. Their
change of shape with the separation r makes it crucial
to specify how the anisotropy degree is quantified and
the amplitude of the fluctuations sampled in the pdf’s

at various r’s. The ratio S5/S
5/4
4 is for example decreas-

ing with r, contrary to the hyperskewness in (15). The
blow-up of the latter is thus a joined effect of anisotropy
and intermittency. The point to be remarked is that
odd-order structure functions are all scaling with ex-
ponents higher than those of structure functions of the
same order but calculated with the absolute values, e.g.
∫

|δrT |3P(δrT ) dδrT . In other words, when fluctuations
of similar amplitude are compared, anisotropic contri-
butions are subdominant with respect to the isotropic
ones. The same point is stressed in Fig. 4, where it is
shown that the ratio between the anti-symmetric and
the symmetric part of scalar increment pdf’s decreases
with r. Notwithstanding the conclusion on the absence
of isotropy restoration in the classical sense, it is thus
important to realize that anisotropic fluctuations become
more and more subdominant as their anisotropy degree
increases.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

℘
as

y(δ
 T

r) 
/ ℘

sy
m
(δ

 T
r)

δTr

r = 2. 10-1

r = 10-1

r = 5 10-2

r = 2.5 10-2

FIG. 4. Ratio between the anti-symmetric and the sym-
metric part of scalar increment pdf’s P(δrT ) for four separa-
tions in the inertial range.

B. Universality

What is the degree of universality of scalar turbu-
lence with respect to the injection mechanisms? Is
the persistence of anisotropy just discussed signalling
that the scalar statistics is totally imprinted by the
non-universal large-scale injection conditions even at the
smallest scales? To answer these questions it is conve-
nient to compare observables, such as even-order struc-
ture functions or pdf’s themselves, that are meaningful
and non trivial for both types of injection.
Let us first start from the scalar field pdf. Even though

this is not a small-scale quantity, it is interesting that
the two curves are different and the one for the mean-
gradient injection is subgaussian, see Fig. 5. Note that
this is not in contradiction with the exponential behav-
ior predicted in [33,41,34]. The latter work considers in-
deed the situation where the velocity correlation length is
much smaller than the typical length of variation of the
large-scale mean scalar profile. In our case, these two
lengths are of the order of the velocity friction length
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This filtering is much more economic as it can be per-
formed by a single measurement along φ = π/4 for even
orders and φ = π/6 for odd-order structure functions.
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FIG. 3. The 3rd and the 5th-order parallel structure func-
tions for the injection by a mean gradient. In the inset, local
scaling exponents dSn(r)/d log r. The measured exponents
are ζ3 = 1.25 ± 0.04, ζ5 = 1.38 ± 0.07, with error bars esti-
mated from rms fluctuations of local scaling exponents.

Let us now present the results concerning the
anisotropy decay rate, measured by odd-order structure
functions. In Fig. 3, we show the 3-rd and the 5-th or-
der structure functions. Accordingly, the skewness and
hyperskewness coefficients of scalar differences scale as

S3/S
3/2
2 ∼ r0.25, S5/S

5/2
2 ∼ r−0.2, (15)

the second-order scaling exponent being compatible,
within the error bars, with the dimensional value " 2/3
(see Fig. 7). Both behaviors (15) violate the dimensional
prediction (7). Furthermore, whilst the skewness is de-
caying, even though much more slowly than the expected
r2/3, the hyperskewness grows at small scales. The ef-
fect of memory of the large-scale injection conditions
observed in laboratory experiments is thus dramatically
present also in our numerical simulations. The fact that
clean scaling behaviors and exponents are measured here
gives a very strong indication in favor of the fact that we
are not dealing with a finite Péclet number effect. The
most natural conclusion stemming from experiments, the
previous and the present numerical simulations is that
isotropy is not restored in the full classical sense, no mat-
ter how large is the Péclet number.
It is worth discussing in some more detail the rela-

tion between this last conclusion and the observation
previously made on the subdominance of higher-order
anisotropic contributions to structure functions. The
problem comes of course from the presence of intermit-
tency : contrary to the classical theory, the pdf of scalar
differences P(δrT ) for various separations r cannot be
collapsed one onto another by a simple rescaling. Their
change of shape with the separation r makes it crucial
to specify how the anisotropy degree is quantified and
the amplitude of the fluctuations sampled in the pdf’s

at various r’s. The ratio S5/S
5/4
4 is for example decreas-

ing with r, contrary to the hyperskewness in (15). The
blow-up of the latter is thus a joined effect of anisotropy
and intermittency. The point to be remarked is that
odd-order structure functions are all scaling with ex-
ponents higher than those of structure functions of the
same order but calculated with the absolute values, e.g.
∫

|δrT |3P(δrT ) dδrT . In other words, when fluctuations
of similar amplitude are compared, anisotropic contri-
butions are subdominant with respect to the isotropic
ones. The same point is stressed in Fig. 4, where it is
shown that the ratio between the anti-symmetric and
the symmetric part of scalar increment pdf’s decreases
with r. Notwithstanding the conclusion on the absence
of isotropy restoration in the classical sense, it is thus
important to realize that anisotropic fluctuations become
more and more subdominant as their anisotropy degree
increases.
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B. Universality

What is the degree of universality of scalar turbu-
lence with respect to the injection mechanisms? Is
the persistence of anisotropy just discussed signalling
that the scalar statistics is totally imprinted by the
non-universal large-scale injection conditions even at the
smallest scales? To answer these questions it is conve-
nient to compare observables, such as even-order struc-
ture functions or pdf’s themselves, that are meaningful
and non trivial for both types of injection.
Let us first start from the scalar field pdf. Even though

this is not a small-scale quantity, it is interesting that
the two curves are different and the one for the mean-
gradient injection is subgaussian, see Fig. 5. Note that
this is not in contradiction with the exponential behav-
ior predicted in [33,41,34]. The latter work considers in-
deed the situation where the velocity correlation length is
much smaller than the typical length of variation of the
large-scale mean scalar profile. In our case, these two
lengths are of the order of the velocity friction length
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scale, defined in Section III, and of the box size, respec-
tively. They are thus comparable. Similar subgaussian
behaviors were also observed in [35].
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FIG. 5. The Pdf’s of the scalar field normalized by its stan-

dard deviation for the two cases of random forcing (upper
curve, multiplied by a factor 102 for plotting purposes) and
injection by a mean gradient (lower curve). Note the pres-
ence of subgaussian tails for the latter (Gaussian densities
are shown for comparison as dotted lines).

Let us move then to the small-scale statistics by consid-
ering scalar increments. In Fig. 6, we present the proba-
bility density functions for the two injection mechanisms :
it is clear that they do not have the same shape and
the same conclusion holds if we take only the symmet-
ric part of the pdf’s. A particular consequence is that
structure functions cannot have a universal expression,
as postulated in the classical theory. It is however di-
rectly checked from Fig. 7 that the scaling exponents are
the same for the two types of injection. This implies that
the pdf’s, although having different shapes, rescale with
r in the same way.
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FIG. 6. Pdf’s of scalar increments normalized by their stan-
dard deviations for three separations r = 2.5× 10−2, 5× 10−2,
10−1 in the inertial range.

The scaling exponents being universal, the depen-
dence on the large-scale injection conditions shows up

in the structure function dominant expression Sn(r) =

Cnε
n/2
θ ε−n/6

v rn/3(L/r)n/3−ζn via the non-dimensional
constants Cn. The resulting picture of universality is
the following : structure function scaling exponents are
independent of the injection details and thus universal ;
scalar and scalar increment pdf’s, and non-dimensional
constants in the structure functions are not. A particu-
lar instance is the one of odd-order structure functions,
where the coefficients C2n+1 vanish or not, depending on
the symmetries of the injection mechanisms. This form
of universality is weaker than the one in the original clas-
sical KOC theory and agrees with the remark made by
L.D. Landau about the universality in Kolmogorov 1941
theory for fully developed turbulence. Remark finally
that this universality framework is the same as the one
arising from the zero mechanism in the Kraichnan passive
scalar model [36–38].
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FIG. 7. Low-order even structure functions. Local scaling
exponents are shown in the inset. The measured exponents
are ζ2 = 0.66± 0.03, ζ4 = 0.95 ± 0.04 and ζ6 = 1.11± 0.04.

V. SATURATION OF INTERMITTENCY

The cliffs observed in scalar fields are strikingly sugges-
tive of quasi-discontinuities. When smaller and smaller
molecular diffusivities are considered, the minimal width
of the fronts shrinks with the dissipation scale, with their
maximum amplitude remaining comparable to the scalar
rms value. Simple phenomenology suggests that the pres-
ence of such structures, corresponding to a local Hölder
exponent equal to zero, might induce a vanishing slope in
the structure function scaling exponent curve. The fronts
being the strongest possible events, this behavior should
take place for large enough orders, whence the possible
saturation ζn → const for high n’s.
The first and most natural way to investigate the satu-

ration is to look directly at the scalar structure function
scaling exponents. An alternative procedure consists in
looking, for a fixed δrT , at how the pdf P(δrT ) of the
scalar differences varies with the separation r. The lat-
ter is statistically more reliable than the former as less

6

scale, defined in Section III, and of the box size, respec-
tively. They are thus comparable. Similar subgaussian
behaviors were also observed in [35].
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dard deviation for the two cases of random forcing (upper
curve, multiplied by a factor 102 for plotting purposes) and
injection by a mean gradient (lower curve). Note the pres-
ence of subgaussian tails for the latter (Gaussian densities
are shown for comparison as dotted lines).

Let us move then to the small-scale statistics by consid-
ering scalar increments. In Fig. 6, we present the proba-
bility density functions for the two injection mechanisms :
it is clear that they do not have the same shape and
the same conclusion holds if we take only the symmet-
ric part of the pdf’s. A particular consequence is that
structure functions cannot have a universal expression,
as postulated in the classical theory. It is however di-
rectly checked from Fig. 7 that the scaling exponents are
the same for the two types of injection. This implies that
the pdf’s, although having different shapes, rescale with
r in the same way.
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FIG. 6. Pdf’s of scalar increments normalized by their stan-
dard deviations for three separations r = 2.5× 10−2, 5× 10−2,
10−1 in the inertial range.

The scaling exponents being universal, the depen-
dence on the large-scale injection conditions shows up

in the structure function dominant expression Sn(r) =

Cnε
n/2
θ ε−n/6

v rn/3(L/r)n/3−ζn via the non-dimensional
constants Cn. The resulting picture of universality is
the following : structure function scaling exponents are
independent of the injection details and thus universal ;
scalar and scalar increment pdf’s, and non-dimensional
constants in the structure functions are not. A particu-
lar instance is the one of odd-order structure functions,
where the coefficients C2n+1 vanish or not, depending on
the symmetries of the injection mechanisms. This form
of universality is weaker than the one in the original clas-
sical KOC theory and agrees with the remark made by
L.D. Landau about the universality in Kolmogorov 1941
theory for fully developed turbulence. Remark finally
that this universality framework is the same as the one
arising from the zero mechanism in the Kraichnan passive
scalar model [36–38].
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FIG. 7. Low-order even structure functions. Local scaling
exponents are shown in the inset. The measured exponents
are ζ2 = 0.66± 0.03, ζ4 = 0.95 ± 0.04 and ζ6 = 1.11± 0.04.

V. SATURATION OF INTERMITTENCY

The cliffs observed in scalar fields are strikingly sugges-
tive of quasi-discontinuities. When smaller and smaller
molecular diffusivities are considered, the minimal width
of the fronts shrinks with the dissipation scale, with their
maximum amplitude remaining comparable to the scalar
rms value. Simple phenomenology suggests that the pres-
ence of such structures, corresponding to a local Hölder
exponent equal to zero, might induce a vanishing slope in
the structure function scaling exponent curve. The fronts
being the strongest possible events, this behavior should
take place for large enough orders, whence the possible
saturation ζn → const for high n’s.
The first and most natural way to investigate the satu-

ration is to look directly at the scalar structure function
scaling exponents. An alternative procedure consists in
looking, for a fixed δrT , at how the pdf P(δrT ) of the
scalar differences varies with the separation r. The lat-
ter is statistically more reliable than the former as less
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!

p
2 and

r2 ! "r1 1 r2 2 2r3#!
p

6, the shape of the triangle is
controlled by the two variables

x ! 1!2 tan21

"

2r1 ? r2

"r2
1 2 r2

2#

#

; w ! 2
jr1 3 r2j

R
. (3)

Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2
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where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!
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2 and

r2 ! "r1 1 r2 2 2r3#!
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6, the shape of the triangle is
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2
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where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!
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2 and
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).

425

size

shape

VOLUME 86, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JANUARY 2001

some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!
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2 and

r2 ! "r1 1 r2 2 2r3#!
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).

425

 orientation of the triangle ϕ



3-points correlation function
<latexit sha1_base64="C2qsUj1ktZ9PyC35ruJ5b7QYUsw="></latexit>

C3(r1, r2, r3)

VOLUME 86, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JANUARY 2001

some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!

p
2 and

r2 ! "r1 1 r2 2 2r3#!
p

6, the shape of the triangle is
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!

p
2 and

r2 ! "r1 1 r2 2 2r3#!
p

6, the shape of the triangle is
controlled by the two variables

x ! 1!2 tan21

"

2r1 ? r2

"r2
1 2 r2

2#

#

; w ! 2
jr1 3 r2j

R
. (3)

Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2
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31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!

p
2 and

r2 ! "r1 1 r2 2 2r3#!
p

6, the shape of the triangle is
controlled by the two variables

x ! 1!2 tan21
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2
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where rij is the distance between the ith and the jth
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C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!
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2 and

r2 ! "r1 1 r2 2 2r3#!
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!

p
2 and

r2 ! "r1 1 r2 2 2r3#!
p

6, the shape of the triangle is
controlled by the two variables
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!
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Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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r in the argument of C3 by their Lagrangian evolutions
r!t", with r!0" ! r. The resulting object is a stochastic
function whose average with respect to the Lagrangian tra-
jectory statistics is denoted by #≤$L . More generally, for
a generic function f!r" of the n points ri we can define
its Lagrangian average as

#f!t"$L !
Z

f!r"Pn!t,rj0, r" dr . (5)

Here the n-particle propagator Pn!t,rj0, r" denotes the
probability that, being in r at time 0, the n particles are
in r at time t. In a turbulent Kolmogorov flow, distances
typically grow with time as jtj3%2, whose special instance is
the celebrated Richardson law #r2

12$L !t" ~ jtj3 for the dis-
tance r12 between two particles. For functions f, homo-
geneous of positive degree s, that is, f!lr" ! lsf!r",
the Lagrangian average will therefore grow as jtj3s%2.

The dimensional expectations à la Richardson are indeed
satisfied for generic functions. Intermittency is dynami-
cally originated by blatant exceptions to the aforemen-
tioned behaviors: the anomalous part of the correlation
functions has a constant Lagrangian average, as clearly
demonstrated in Fig. 4 for the third order case. Those pre-
served functions are the statistical integrals of motion re-
sponsible for the breaking of scale invariance associated
with intermittency. The other important point is that their
constancy is tightly related to the geometry of the figures
identified by the Lagrangian particles. Figure 4 indicates
indeed that the size factor Rz3 grows as jtj3z3%2. The La-
grangian average of C3 remaining constant, the shape part
f!x , w" cosw in (4) must compensate for the growth of the
figure size. As shown in Fig. 3, the function f decreases
going from degenerate triangles with two of the vertices
close to each other to triangles with aspect ratios of or-
der unity. The geometrical meaning of anomalous scaling
laws is then quite clear : the smaller the z3, the slower is the
compensation needed from the shape factor and the longer
degenerate triangle configurations persist. In other words,
“stronger intermittency ! subgroups of particles staying
longer close to each other.”
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FIG. 4. The Lagrangian average of the correlation function
#C3$L . For comparison, also shown is the evolution of the av-
erage #Rz3 $L & jtj!3%2"z3 that obeys the dimensional scaling law.

Systematic support to the previous physical ideas can be
provided in the special case where the advecting velocity
in (1) has a short correlation time, the so-called Kraichnan
model [14]. The assumption is, of course, far from realis-
tic, but it leads to the peculiar property that the n-particle
propagators Pn in (5) obey closed Fokker-Planck equations
[15] (see also Ref. [1]). The statistically preserved func-
tions are now identified as zero modes of the n-particle
Fokker-Planck operator [16–18]. Their anomalous scal-
ing behavior could be calculated in some perturbative lim-
its [16–18] or measured numerically [19,20]. Zero modes
enter the Pn’s via the asymptotic expansion [21] (see also
Ref. [22]):

Pn!t,rj0, lr" !
X

i,q
lsi,q fi,q!r"ci,q!t,r" , (6)

valid for small l’s. Zero modes are the q ! 0 terms in (6),
and they are ordered according to their scaling dimension
by the index i. Higher q’s identify the so-called slow
modes, whose Lagrangian average is growing as an integer
power of time, although with an exponent smaller than the
dimensional one 3si,q%2.

A simple example of slow mode for the inverse cascade
flow is provided for n ! 2. The Lagrangian average of !g ?
r12" is preserved as its time derivative is proportional to
#!y1 2 y2"$ ! 0. The first slow mode associated with it is
given by the function !g ? r12"r2%3

12 . Figure 5 shows indeed
that its Lagrangian average grows as jtj, much slower at
large times than the dimensional law jtj5%2.

What is the degree of generality of the Lagrangian
preservation mechanism for intermittency and the expan-
sion (6)? The crucial property of the Kraichnan velocity
field is its short correlation time (this ensures that the
Lagrangian trajectories are Markovian). For the inverse
energy cascade flow considered here this property is lost
as the correlation time is finite. The numerical results
presented here give therefore a strong indication that the
basic mechanisms for scalar intermittency are quite robust
and generic. Changing the statistics of the flow affects
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FIG. 5. The Lagrangian average of the anisotropic slow mode
!g ? r12"r2%3

12 vs time.
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Lagrangian average of the 3-points correlation function

4

M4C4 ⇠ �(0)C2 =) [C4] = [M4]
�1[C2] = L2(2�⇠)

...

MNCN ⇠ �(0)CN�2 =) [CN ] = [MN ]�1[CN�2] = LN(2�⇠)

So the scaling is always dimensiona?

Zero Modes Dominance
The scaling arguments presented above are just based on the inhomogeneous solution of the PDE defining the CN

the most general solution of

�MNCN = CN�2 ⌦ � (26)

is

CN (r) = Cinhom
N (r) + ZN (r) (27)

where

MNZN = 0

are the ZERO MODES. Now if ZN is a scaling function with exponents smaller than the dimensional one ⇣dim =
N(2� ⇠) it will dominate the scaling.

N.B. Zero modes require matching with the inhomogeneous solution and thus matching with the “boundary
conditions” imposed by the forcing and velocity length scales, this will not anyway a↵ect the scaling but just the
multiplicative costants.

Lagrangian (Physical) interpretation of the Modes Dominance
OBSERVATION: Since, in the Kraichnan flow v(x, t) is time-reversal invariant (thanks to the delta correlation in
time), the backward and forward probability distribution functions coincide and evolve with the same operator.

We now consider the so-called Lagrangian average, given a function of N points f(x) we can define its Lagrangian
average as

hfi(t;x0) =

Z
dxPN (x, t|x0, 0)f(x) (28)

such averages allow to test the Lagrangian dynamics. Consider now a scaling function f(�x) = ��f(x) what do we
expect for its time growth? For a generic function,

hfi(t;x0) ⇠ t�/(2�⇠) (29)

e.g. f(x1,x2) = ||x1 � x2||2 = R2 then we are just doing Richardson dispersion and hfi(t;x0)i ⇠ t2/(2�xi (⇠ = 0 !
R2 ⇠ t Brownian di↵usion).

In general a configuration of N -points define a shape and a size: the size is e.g. R = (
P

n<m R2
nm)1/2 and the

shape R/R, for generic function the lagrangian average leads to a time growth inherited by the growth of the size
with time, as exemplified before. Let’s now consider the Lagrangian average of zero modes:

hZN i(t;x0) =

Z
dxPN (x, t|x0, 0)ZN (x) (30)

by doing the time derivative one realizes that

d

dt
hZN i(t;x0) =

Z
dx@tPN (x, t|x0, 0)ZN (x) = hMNZN i(t|0,x0) = 0! (31)

So zero modes are functions which are statistically conserved by the Lagrangian flow. Example for ⇠ = 0 zero modes
are function that annihilate under the application of the Laplacian, and are known as Harmonic Polynomials e.g.

hR2
12 �R2

34i = hR2
12i � hR2

34i = (R2
12(0) + 2Dt)� (R2

34(0) + 2Dt) = const

VOLUME 86, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JANUARY 2001

some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1!3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn"r, t# ! $u"r1, t# · · · u"rn, t#%, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn"r# behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n !
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 ! "r2

12 1 r2
23 1 r2

31#!3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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101

10-2 10-1 1

C
3

R

Rζ3

FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.

scales C3 depends on R as a power law with the expo-
nent z3 ! 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5!3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 ! "r1 2 r2#!

p
2 and

r2 ! "r1 1 r2 2 2r3#!
p

6, the shape of the triangle is
controlled by the two variables

x ! 1!2 tan21

"

2r1 ? r2

"r2
1 2 r2

2#

#

; w ! 2
jr1 3 r2j

R
. (3)

Some of the shapes associated with different values of x
and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos"!w# and sin"!w#.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum ! should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3"r# ! Rz3f"x , w# cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos"2! 1 1#w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p!6 , x ,
p!6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p!3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x ! 0, w ! 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w ! 1) or for the “dumbbell” configuration
x ! p!6, w ! 0, the symmetries enforce f ! 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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f =
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f = C3(r)

The size growth is compensated  
by the shape evolution



A side observation: saturation of intermittency
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Remarks
At least in Kraichnan flows (and some evidence in realistic flows) we can say that the mechanism for 
anomalous scaling in passive scalar turbulence is the dominance of zero modes

Zero modes admit an interesting (and testable) physical interpretation: they are functions 
statistically preserved over the Lagrangian paths. This conservation comes from a compensation 
of the growth in scale by the geometry (shape) 
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Remarks
At least in Kraichnan flows (and some evidence in realistic flows) we can say that the mechanism for 
anomalous scaling in passive scalar turbulence is the dominance of zero modes

Zero modes admit an interesting (and testable) physical interpretation: they are functions 
statistically preserved over the Lagrangian paths. This conservation comes from a compensation 
of the growth in scale by the geometry (shape) 

Anomalous scaling, for the velocity field  
(but it  holds also for passive fields), is typically  
rationalized in terms of  the multifractal model  

The connection (if any) between  
these two views is an open question 

Hidden symmetry (Talk by Chiara Calscibetta) 
would suggest anomalous scaling to originate 
from a multiplicative process ->multifractal 

What is the connection with zero modes 
Falkovich & Sreenivasan. "Lessons from hydrodynamic turbulence." 

Physics Today 59.4 (2006): 43-49.



2d-Magnetohydrodynamics
an illustrative example

∂ta + v · ∇a = κ∆a + Fa magnetic potential

∂tv + v ·∇v = −∇p + ν∆v − ∆a∇a

∂tc + v · ∇c = κ∆c + Fc passive field

b

B

|B|>>|b|

b = ∇⊥a = (−∂ya, ∂xa) Magnetic Field

(∇× b) × b = −∆a∇a Lorentz Force

2d-mhd is obtained from 3d-mhd when the vertical magnetic field
is much more intense that that on the transversal plane

Fa & Fc are different realizations of the same random process that is δ-correlated in time
and with support at scale Lf ∼ 1/kf

Dynamics and statistics of the active and passive fields?

On the Lagrangian meaning of dissipative anomaly in scalar turbuence – p.6/14

An example of active 2D MHD

We choose to force passive and active scalars in the same way



2D MHD: phenomenology2d-Magnetohydrodynamics
an illustrative example

a c

Ti
m
e

Inverse cascade: no dissipative anomaly
εa = limκ→0 κ〈|∇a|2〉 = 0

ea(t) = 1
2

R
a2(x, t) dx ∝ t

Direct cascade: dissipative anomaly
εc = limκ→0 κ〈|∇c|2〉 ≈ input
ec(t) = 1

2

R
c2(x, t) dx ≈ const
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On the Lagrangian meaning of dissipative anomaly in scalar turbuence – p.6/14

What is the origin of such differences? 
Can we understand it adopting a Lagrangian point of view?

A. Celani, M.C., A. Mazzino & M. Vergassola, PRL 89, 234502 (2002); NJP 6, 72 (2004)  

As typical in inverse cascades the statistics of a (but also of v) is Gaussian and not intermittent
D. Biskamp and U. Bremer, Phys. Rev. Lett. 72, 3819 (1994) 



2D MHD: Another look at the absence of dissipative anomaly
Consequences of εa = 0

∂ta + v · ∇a = κ∆a + Fa

a(x, t)=
DR t

0 ds Fa(X(s), s)
E

X
=

R t
0 ds

R
Fa(y, s) p(y, s|x, t) dy

a2(x, t)=[
〈

∫ t

0 dsFa(X(s), s)
〉

X
]2

∂ta2 + v ·∇a2 = κ∆a2 + 2aFa − 2εa εa → 0

a2(x, t) = 2
R t
0 ds

R
dyp(y, s|x, t)Fa(y, s)

R s
0 ds′

R
dy′Fa(y′, s′)p(y′, s′|y, s)

a2(x, t) =
RR t

0 dsds′
RR

dydy′p(y, s; y′, s′|x, t)Fa(y, s)Fa(y′, s′) = 〈[
R t
0 ds Fa(X(s), s)]2〉

a2(x, t)=
〈

[
∫ t

0 dsFa(X(s), s)]2
〉

X

On the Lagrangian meaning of dissipative anomaly in scalar turbuence – p.12/14
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Z t

0
ds
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Now let’s see if we can find another expression for a2
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One can generalize to
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✏a ! 0

All paths are constrained to sum up the same forcing contribution!!!!! 
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✏a ! 0

How can all paths sum up the same forcing contribution?

of the Lagrangian flow results then in the persistence of scalar energy dissipation in the limit
κ→ 0.

The same effect may be seen in averaged quantities, also in compressible Kraichnan ve-
locities. Suppose that at the initial time s we are given an homogeneous, isotropic scalar
distribution with the 2-point function

E θ(s,y) θ(s,y+ ρ) = F
2
(s, ρ) . (4.11)

Then, if the initial scalar distribution is independent of velocities and in the absence of sources,
the scalar 2-point function at the later time t is given by

F
2
(t, ρ0) ≡ E θ(t,x) θ(t,x+ ρ0) =

∫
F

2
(s, ρ) P

2
(t, ρ0; s, dρ) . (4.12)

In particular, the mean scalar energy density

F
2
(t, 0) =

∫
F

2
(s, ρ) lim

ρ0→0
P

2
(t, ρ0; s, dρ) . (4.13)

17

In passive scalars  
this happens in compressible flows 

where for  
all paths collapse 

κ → 0

Gawedzki Vergassola,  PhysicaD 138, 63 (2000) 

In our case velocity is incompressible 
and the scalar field is active so the above relation  

must be the result of the collective organization of many paths 
and non-trivial correlations between the forcing and the paths
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Some general considerations on active scalarsActive Scalar Turbulence

Fields that act on the velocity through local forces

∂ta + v · ∇a = κ∆a + Fa

∂tv + v ·∇v = −∇p + ν∆v + F(a,∇a, . . .)

e.g. Thermal Convection: a (temperature) F = −βga (buoyancy)

Fields functionally linked to the velocity field

∂ta + v · ∇a = κ∆a + Fa

vi(x, t) =
∫

dy Γi[x,y] a(y, t)

e.g. 2d-NS a = ∇× v (vorticity) Γi[x, y] = −(2π)−1 εij∂j log |x− y|

Due to the coupling v depends on Fa via a and the problem is
now nonlinear

Universality in turbulent systems? – p.10/22

or MHD

or Surface Quasi-Geostrophic equation

Surface Turbulence

∂ta + v · ∇a = κ∆a + Fa vi(x, t) =
R

dy a(y, t) εij∂xi
|x− y|−1

a- fluid density on the flat surface of an infinitely high fluid column

Dimensional prediction: Ea(k) ∼ Ec(k) ∼ k−5/3

(R.T. Pierrehumbert et al. , Chaos Sol. Fract. 4, 1111 (1994); J. Fluid Mech. 282, 1 (1995))

Universality in turbulent systems? – p.16/22

Due to the “activity” i.e. the dependence of v on a the problem is non linear and one cannot invoke 
the zero modes picture to justify universality of the statistics 

in other terms both the statistical properties of velocity and scalar fields are no more guarantee to be universal 
with respect to the forcing  



Bibliography
Reviews on passive scalars 
Theo:

B. I. Shraiman, E. D. & Siggia, (2000). Scalar turbulence. nature, 405(6787), 639-646.

G Falkovich,  K. Gawȩdzki, and MVergassola. "Particles and fields in fluid turbulence." Reviews of modern Physics 73, no. 4 (2001): 913

Exp:

Warhaft, Z. (2000). Passive scalars in turbulent flows. Annual review of fluid mechanics, 32(1), 203-240.


Kraichnan model 
Where all started

Kraichnan, R. H. (1968). Small‐scale structure of a scalar field convected by turbulence. The Physics of Fluids, 11(5), 945-953.

Kraichnan, Robert H. "Anomalous scaling of a randomly advected passive scalar." Physical review letters 72.7 (1994): 1016.

Three independent solutions

Gawȩdzki, Krzysztof, and Antti Kupiainen. "Anomalous scaling of the passive scalar." Physical review letters 75, no. 21 (1995): 3834.

Chertkov, Misha, Gregory Falkovich, Igor Kolokolov, and Vladmir Lebedev. "Normal and anomalous scaling of the fourth-order correlation function of a randomly 
advected passive scalar." Physical Review E 52, no. 5 (1995): 4924.

Shraiman, BI., and ED. Siggia. "Anomalous scaling of a passive scalar in turbulent flow” Comptes Rendus de l'Académie des Sciences. Sér II 321, 
279 (1995)

Further technical but crucial results

Bernard, Denis, Krzysztof Gawedzki, and Antti Kupiainen. "Anomalous scaling in the N-point functions of a passive scalar." Physical Review E 54, 
no. 3 (1996): 2564.

Bernard, Denis, Krzysztof Gawedzki, and Antti Kupiainen. "Slow modes in passive advection." Journal of Statistical Physics 90, no. 3 (1998): 
519-569.

Frisch, U., A. Mazzino, and M. Vergassola. "Intermittency in passive scalar advection." Physical review letters 80, no. 25 (1998): 5532.

Gat, Omri, and Reuven Zeitak. "Multiscaling in passive scalar advection as stochastic shape dynamics." Physical Review E 57, no. 5 (1998): 5511.

Gawȩdzki, Krzysztof, and Massimo Vergassola. "Phase transition in the passive scalar advection." Physica D: Nonlinear Phenomena 138, no. 1-2 
(2000): 63-90.



Bibliography
DNS 
Passive scalars 
Celani, A., and M. Vergassola. "Statistical geometry in scalar turbulence." Physical review letters 86, no. 3 (2001): 424.

Celani, A., Lanotte, A., Mazzino, A. and Vergassola, M., 2000. Universality and saturation of intermittency in passive scalar turbulence. Physical 
review letters, 84(11), p.2385.

Celani, A., Lanotte, A., Mazzino, A. and Vergassola, M., 2001. Fronts in passive scalar turbulence. Physics of Fluids, 13(6), pp.1768-1783

**Calascibetta, Chiara, Luca Biferale, Fabio Bonaccorso, Massimo Cencini, and Alexei A. Mailybaev. "Hidden symmetry in passive scalar advected by 
two-dimensional Navier-Stokes turbulence." Physical Review Fluids 10, no. 8 (2025): 084605.


Active scalars 
Celani, Antonio, Massimo Cencini, Andrea Mazzino, and Massimo Vergassola. "Active versus passive scalar turbulence." Physical review letters 89, no. 23 
(2002): 234502.

Celani, Antonio, Massimo Cencini, Andrea Mazzino, and Massimo Vergassola. "Active and passive fields face to face." New Journal of Physics 6, no. 1 (2004): 
72.


SHELL MODELS

Wirth, Achim, and L. Biferale. "Anomalous scaling in random shell models for passive scalars." Physical Review E 54, no. 5 (1996): 4982.

Benzi, R., Biferale, L., & Wirth, A. (1997). Analytic calculation of anomalous scaling in random shell models for a passive scalar. Physical review letters, 
78(26), 4926.

**Thalabard, S., & Mailybaev, A. A. (2024). From zero-mode intermittency to hidden symmetry in random scalar advection. Journal of Statistical Physics, 
191(10), 131.


** use the idea of hidden symmetry introduced in 

Mailybaev, Alexei A. "Hidden scale invariance of intermittent turbulence in a shell model." Physical Review Fluids 6, no. 1 (2021): L012601.



