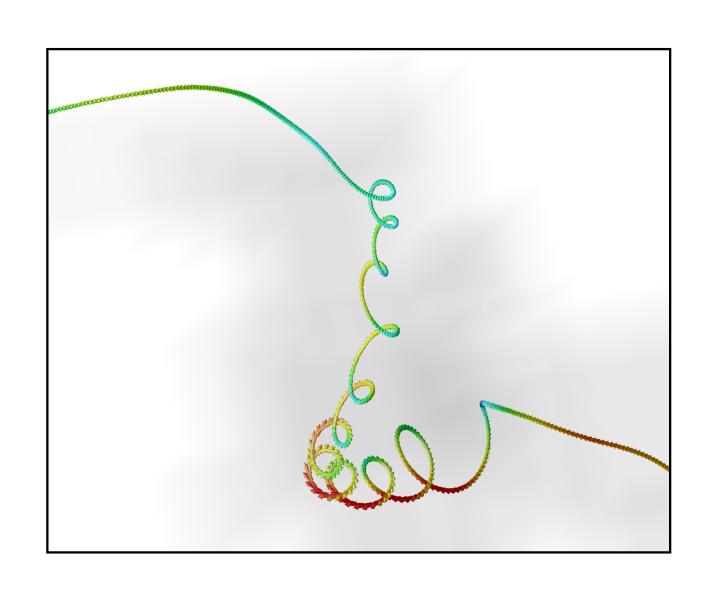
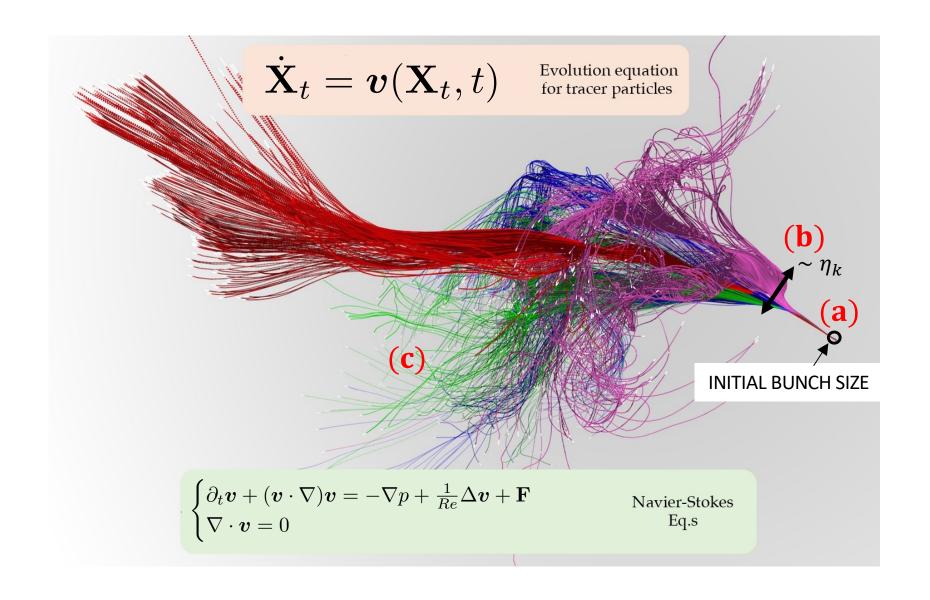


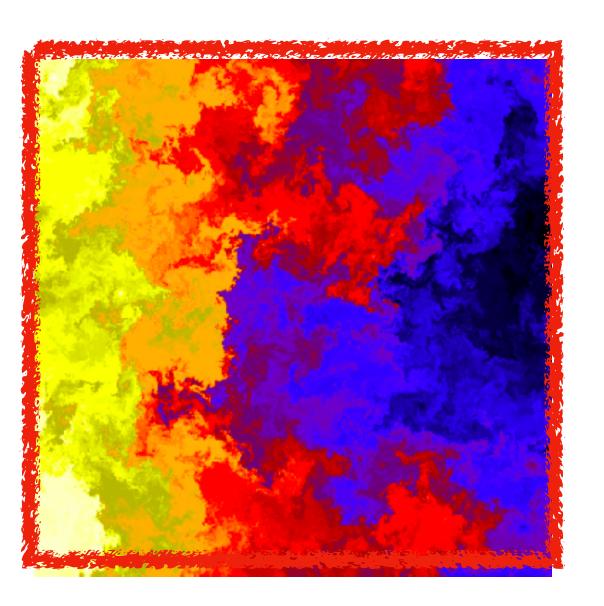
Lagrangian Turbulence: from tracers to intermittency and transport (III)

Massimo Cencini

Istituto dei Sistemi Complessi CNR Rome, Italy INFN "Tor Vergata", Rome, Italy massimo.cencini@cnr.it

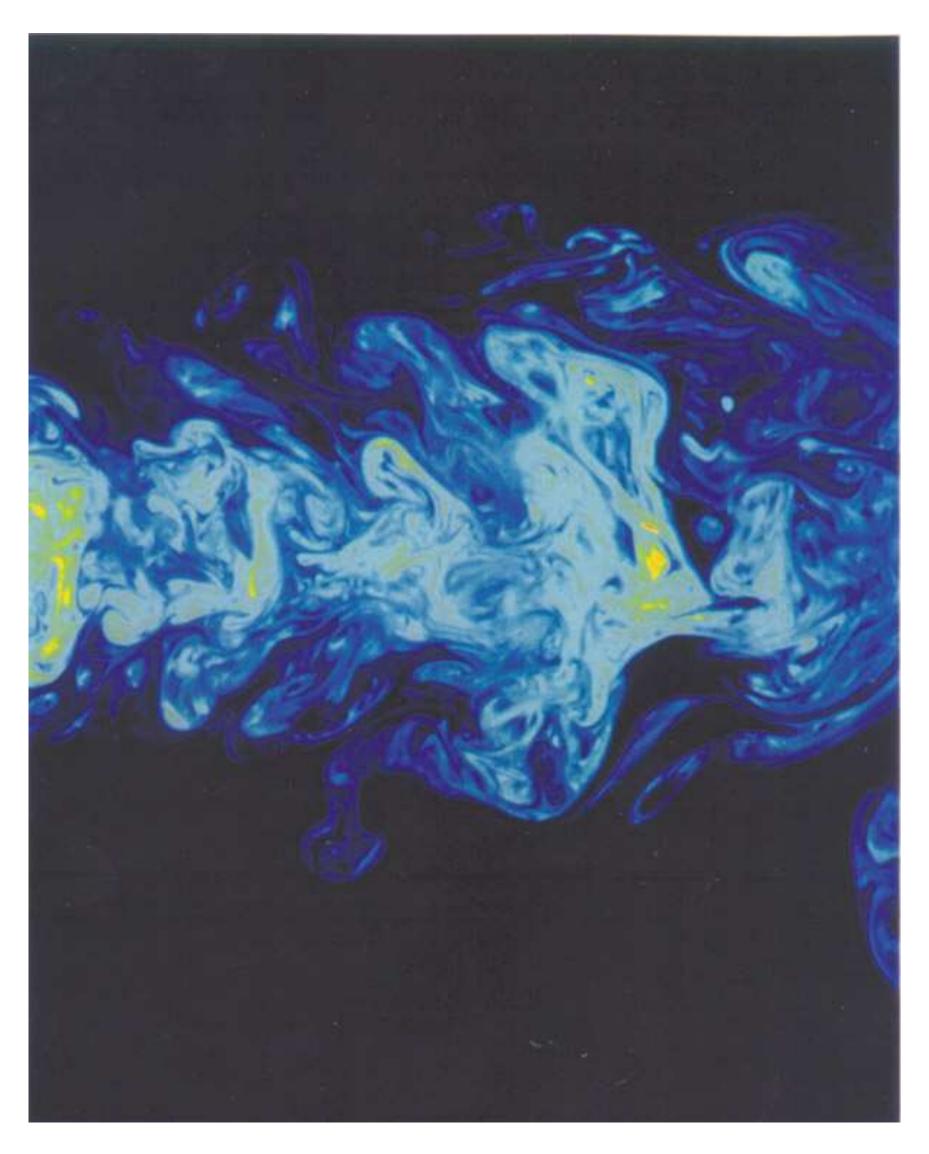






Outline -topic 3-

- Recall of the Eulerian view of scalar fields
- Lagrangian view of scalar transport: basic ideas
 - interpretation of dissipative anomaly
 - intermittency, origin of universality and zero modes
- Some extra (depending on time): active scalars



Shraiman & Siggia, Nature **405**, 639 (2000)

velocity is given and not modified by the transported field

$$\partial_t c + \boldsymbol{v} \cdot \boldsymbol{\nabla} c = \kappa \Delta c + F_c$$

Yaglom relation (similar to 4/5-law)

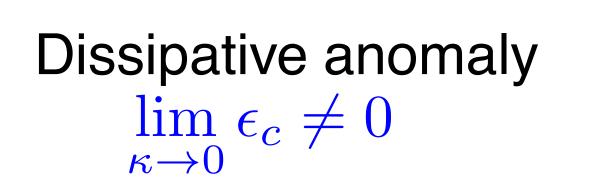
$$\langle \delta_r v(\delta_r c)^2 \rangle = -4/3\epsilon_c r$$

Phenomenology very similar to NS

- Cascade towards the small scales
 - Finite energy dissipation for $\kappa \to 0$
- Intermittency of the small scales

$$\partial_t c + \boldsymbol{v} \cdot \boldsymbol{\nabla} c = \kappa \Delta c + F_c$$

$$\frac{1}{2}\frac{d}{dt}\int d\boldsymbol{x}\,c^2(\boldsymbol{x},t) = \langle cF_c \rangle - \kappa \langle |\nabla c|^2 \rangle = F_0 - \epsilon_c \approx 0$$



$$\langle \kappa | \nabla c |^2 \rangle = \epsilon_c \approx \langle cF_c \rangle$$

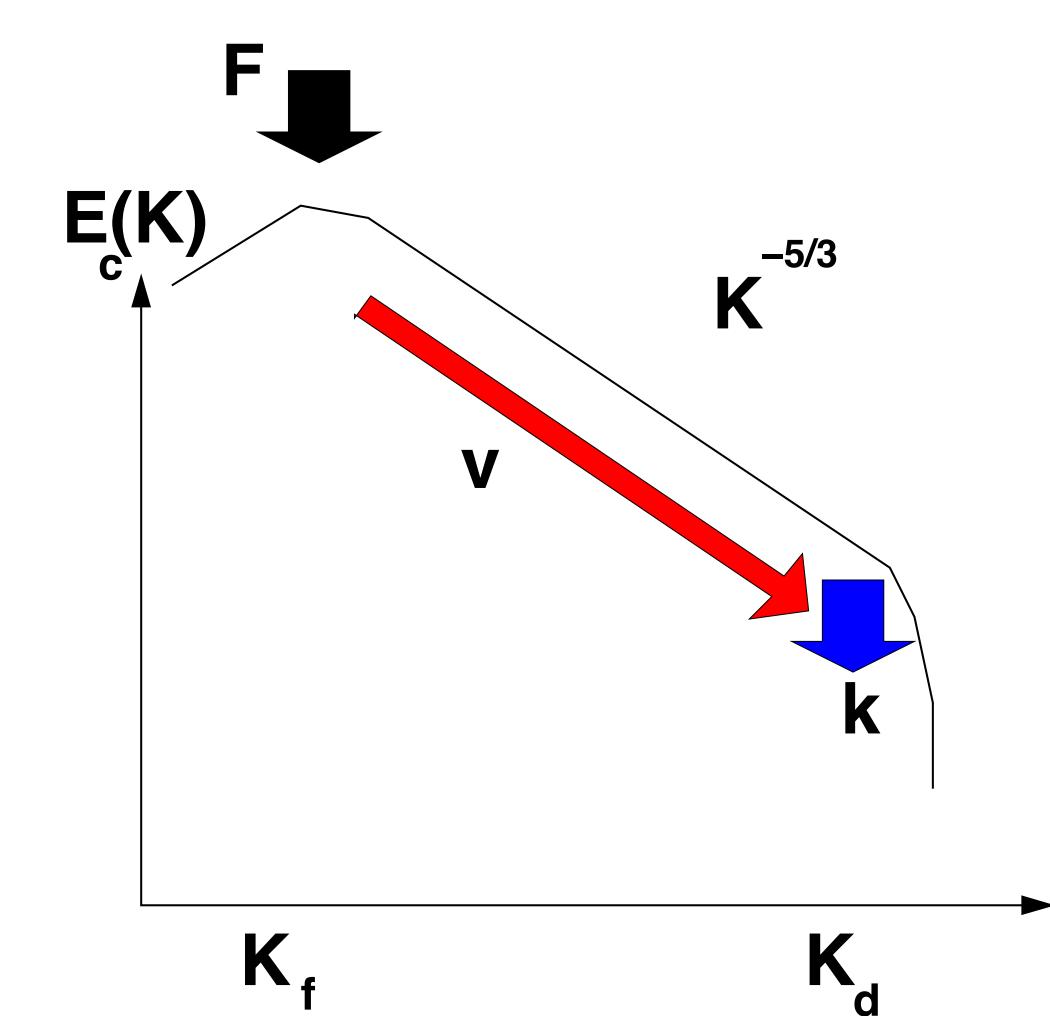
Yaglom Relation

$$\langle \delta_r v(\delta_r c)^2 \rangle = -\frac{4}{3} \epsilon_c r$$

assume K41 turbulence

$$\delta_r v \sim (\epsilon_v r)^{1/3}$$

by dimensional arguments
$$\delta_r c \sim \epsilon_c^{\frac{1}{2}} \epsilon_v^{-\frac{1}{6}} r^{\frac{1}{3}}$$



$$\langle (\delta_r c)^n \rangle = B_n (\epsilon_c^{1/2} \epsilon_v^{-1/6} r^{1/3})^n \left(\frac{L}{r}\right)^{n/3 - \sigma_n} \qquad \sigma_n \neq \sigma_n^{dim} = \frac{n}{3}$$

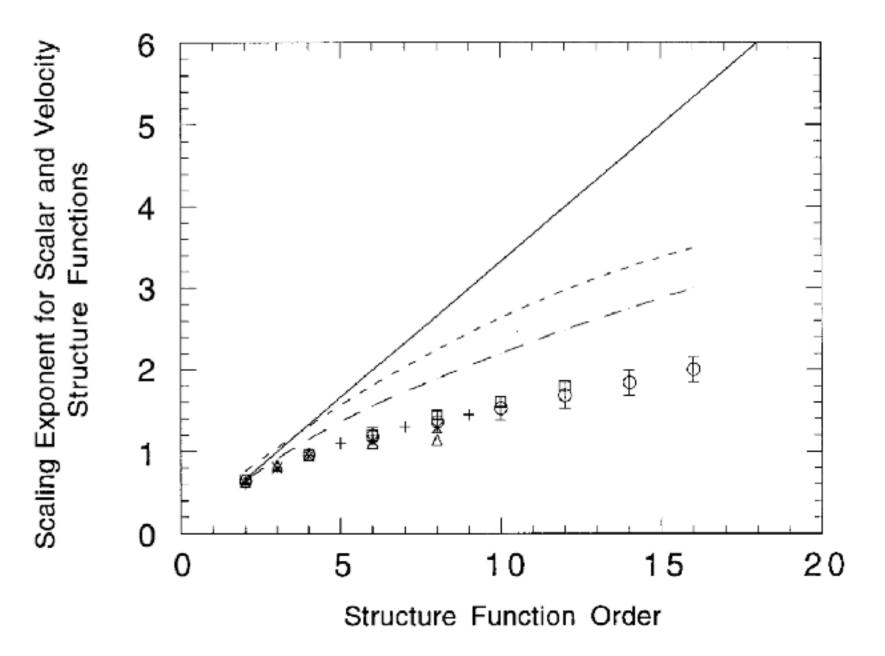


Figure 11 The scaling exponent ζ_n for the scalar structure function $\langle [\Delta\theta(r)]^n \rangle$ within the inertial subrange as a function of *n. Squares* are from the data of Antonia et al (1984) (heated jet), *crosses* are from the data of Ruiz-Chavarvia et al (1996) (heated wake), *triangles* are from the data of Meneveau et al (1990) (heated wake), *circles* are from the data of Mydlarski & Warhaft (1998a) (grid turbulence), and *plus signs* are from the full, three dimensional Navier-Stokes numerical simulations of Chen & Kraichnan (1998). *Vertical bars* represent uncertainty for the Mydlarski & Warhaft data. The *long-dashed line* is the white-noise estimate from Kraichnan (1994). *The short-dashed line* is for the velocity field from Anselmet (1984). The solid line is the KOC prediction.

Warhaft, Ann. Rev. Fluid Mech. **32**, 203 (2000)

IN 3D turbulent flows

Scalar increments display anomalous scaling and the exponents appear to be universal

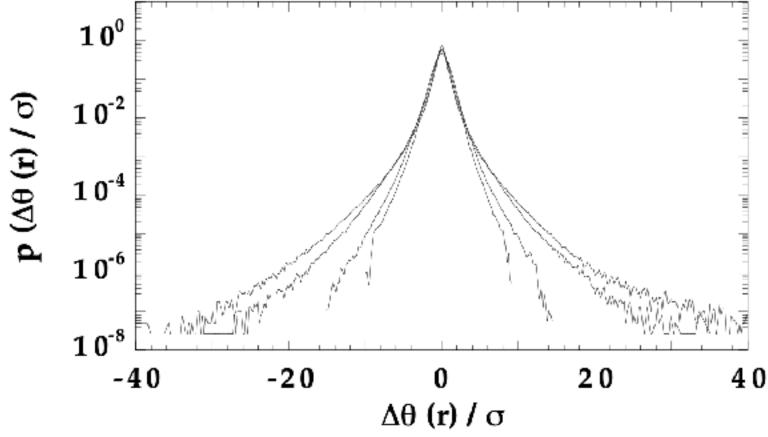


FIG. 2. Probability density functions of the normalized temperature increments, for $R_{\lambda} = 650$ (file #4 of Tab. 1). From the inner to the outer pdf, $r/\eta = 10^4$, 600, 30 and 3.

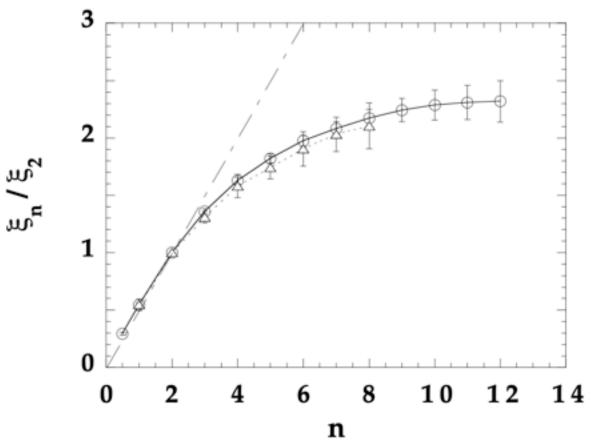


FIG. 3. Temperature structure function exponents, ξ_n , normalized by ξ_2 . \bigcirc : $R_{\lambda} = 280$ in COR mode, \triangle : $R_{\lambda} = 650$ in CTR mode. The dashed line indicates the Corrsin-Obukhov scaling n/2.

F. Moisy, H. Willaime, J.S. Andersen P. Tabeling PRL 86, 4827 (2001)

In 2D turbulence in the inverse cascade of velocity: the velocity field is non intermittent and display K41 scaling yet the scalar field is intermittent and the exponents are universal

So scalar intermittency is not inherited from velocity intermittency!!!

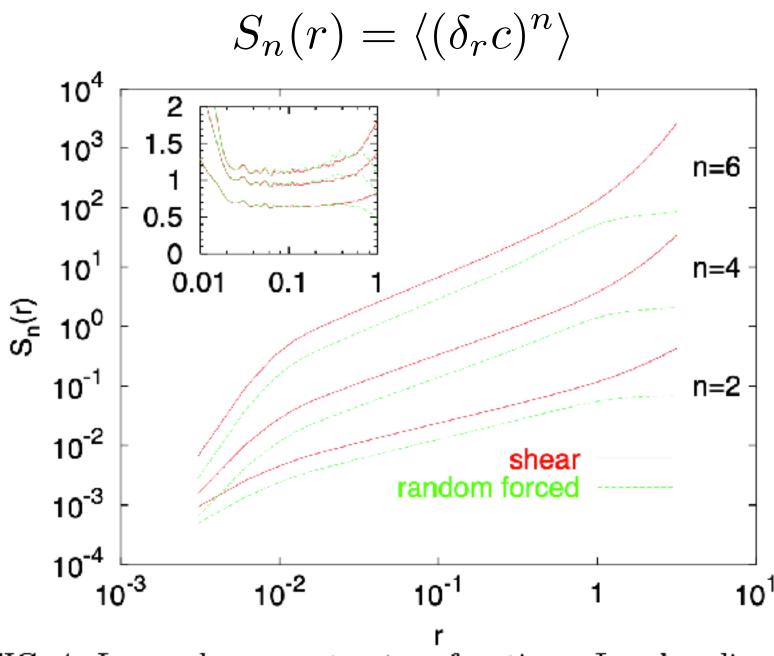
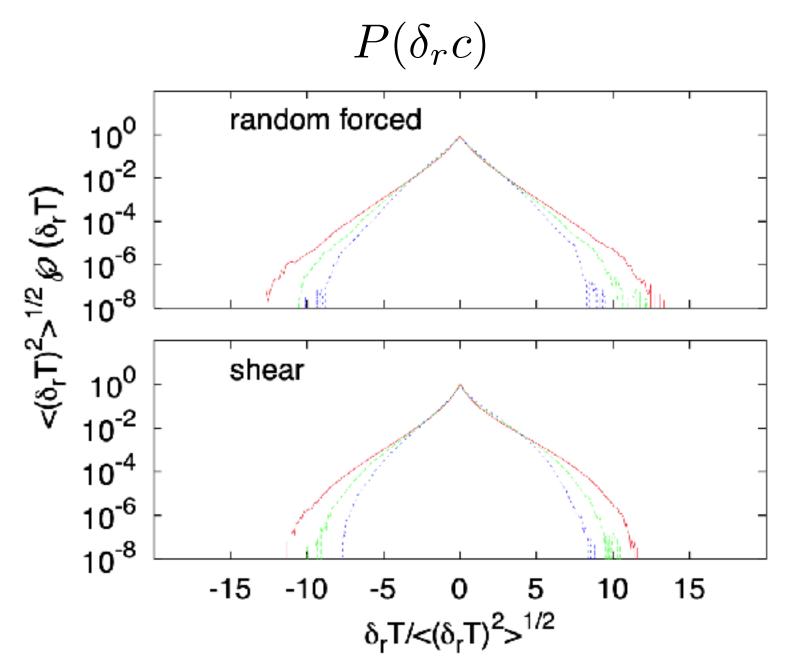


FIG. 4. Low-order even structure functions. Local scaling exponents are shown in the inset. The measured exponents are $\zeta_2 = 0.66 \pm 0.03$, $\zeta_4 = 0.95 \pm 0.04$ and $\zeta_6 = 1.11 \pm 0.04$.



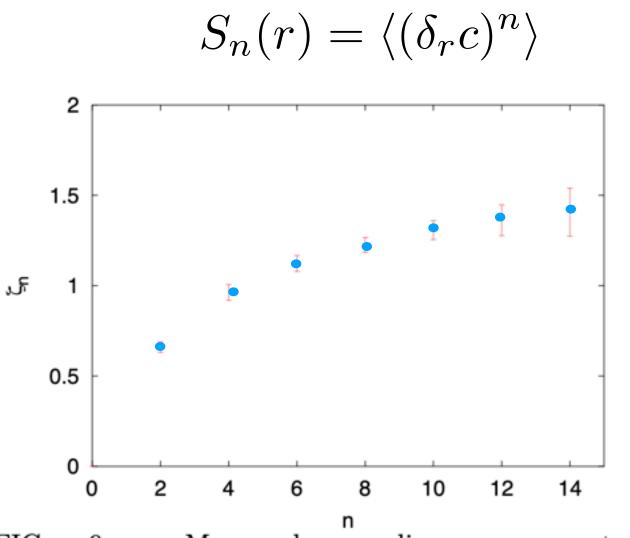


FIG. 9. Measured scaling exponent ζ_n for the Navier–Stokes advection. Error bars are estimated by the rms fluctuations of local scaling exponents.

FIG. 3. Pdf's of scalar increments normalized by their standard deviations for three separations $r = 2.5 \times 10^{-2}$, 5×10^{-2} , 10^{-1} in the inertial range.

A Celani, A Lanotte, A., Mazzino, M Vergassola, PRL 84, 2385 (2000); & PoF, 13, 1768-1783 (2001)

Lagrangian view of scalar transport

$$\partial_t \theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \theta = \kappa \Delta \theta + F$$

is equivalent to the SDE

$$\dot{\boldsymbol{y}}(s) = \boldsymbol{v}(\boldsymbol{y}(s), s) + \sqrt{2\kappa}\eta(s) \qquad \langle \eta(t)\eta(t')\rangle = \delta(t - t')$$

$$\dot{\phi}(s) = F(\boldsymbol{y}(s), s)$$

$$\theta(\boldsymbol{x},t) = \langle \phi \rangle_{\eta|\boldsymbol{y}(t)=\boldsymbol{x}} = \int^t ds \langle F(\boldsymbol{y}(s;\boldsymbol{x},t),s) \rangle_{\eta}$$

Lagrangian view of scalar transport

$$\partial_t \theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \theta = \kappa \Delta \theta + F$$

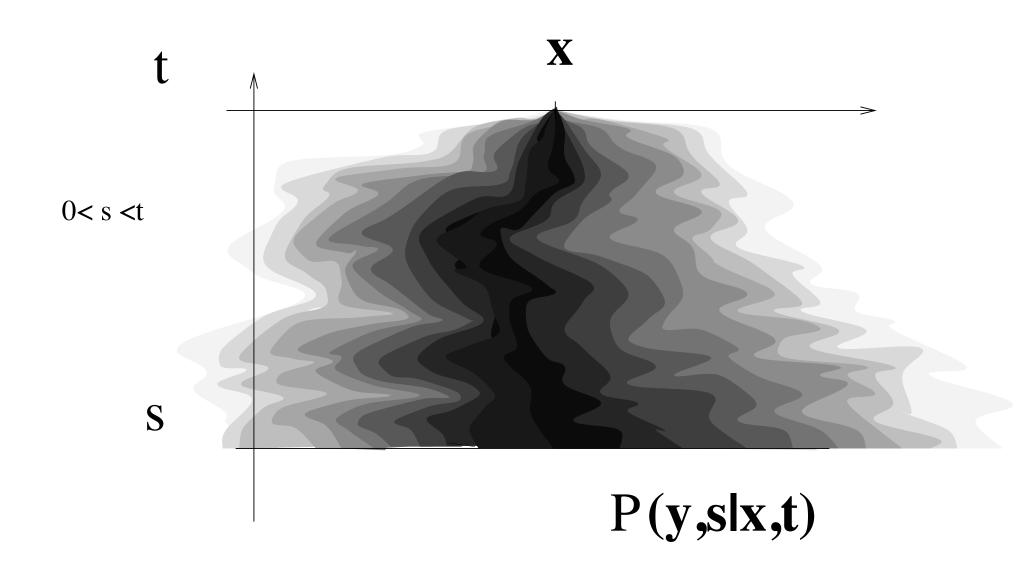
is equivalent to the SDE

$$\dot{\boldsymbol{y}}(s) = \boldsymbol{v}(\boldsymbol{y}(s), s) + \sqrt{2\kappa}\eta(s) \qquad \langle \eta(t)\eta(t')\rangle = \delta(t - t')$$

 $\dot{\phi}(s) = F(\boldsymbol{y}(s), s)$

$$\theta(\boldsymbol{x},t) = \langle \phi \rangle_{\eta|\boldsymbol{y}(t)=\boldsymbol{x}} = \int^t ds \langle F(\boldsymbol{y}(s;\boldsymbol{x},t),s) \rangle_{\eta}$$

$$\theta(\boldsymbol{x},t) = \int_{0}^{t} ds \int d\boldsymbol{y} p_{v}(\boldsymbol{y},s|\boldsymbol{x},t) F(\boldsymbol{y},s)$$



Lagrangian propagator

$$p_v(\mathbf{y}, t | \mathbf{x}, t) = \delta(\mathbf{x} - \mathbf{y})$$

$$p_v(\mathbf{y}, s | \mathbf{x}, t) = \langle \delta(\mathbf{y} - \mathbf{y}(s; \mathbf{x}, t)) \rangle_{\eta}$$

Lagrangian view of scalar transport

$$\partial_t \theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \theta = \kappa \Delta \theta + F$$

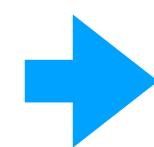
is equivalent to the SDE

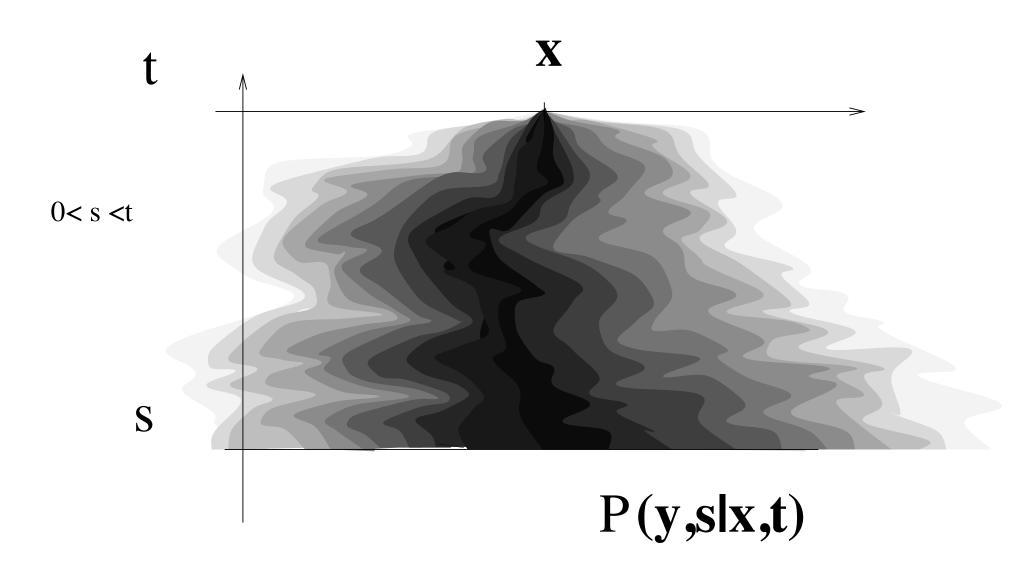
$$\dot{\boldsymbol{y}}(s) = \boldsymbol{v}(\boldsymbol{y}(s), s) + \sqrt{2\kappa}\eta(s) \qquad \langle \eta(t)\eta(t')\rangle = \delta(t - t')$$

 $\dot{\phi}(s) = F(\boldsymbol{y}(s), s)$

$$\theta(\boldsymbol{x},t) = \langle \phi \rangle_{\eta|\boldsymbol{y}(t)=\boldsymbol{x}} = \int^t ds \langle F(\boldsymbol{y}(s;\boldsymbol{x},t),s) \rangle_{\eta}$$

$$\theta(\boldsymbol{x},t) = \int_{-\infty}^{t} ds \int d\boldsymbol{y} p_{v}(\boldsymbol{y},s|\boldsymbol{x},t) F(\boldsymbol{y},s)$$





Lagrangian propagator

$$p_v(\mathbf{y}, t | \mathbf{x}, t) = \delta(\mathbf{x} - \mathbf{y})$$

$$p_v(\mathbf{y}, s | \mathbf{x}, t) = \langle \delta(\mathbf{y} - \mathbf{y}(s; \mathbf{x}, t)) \rangle_{\eta}$$

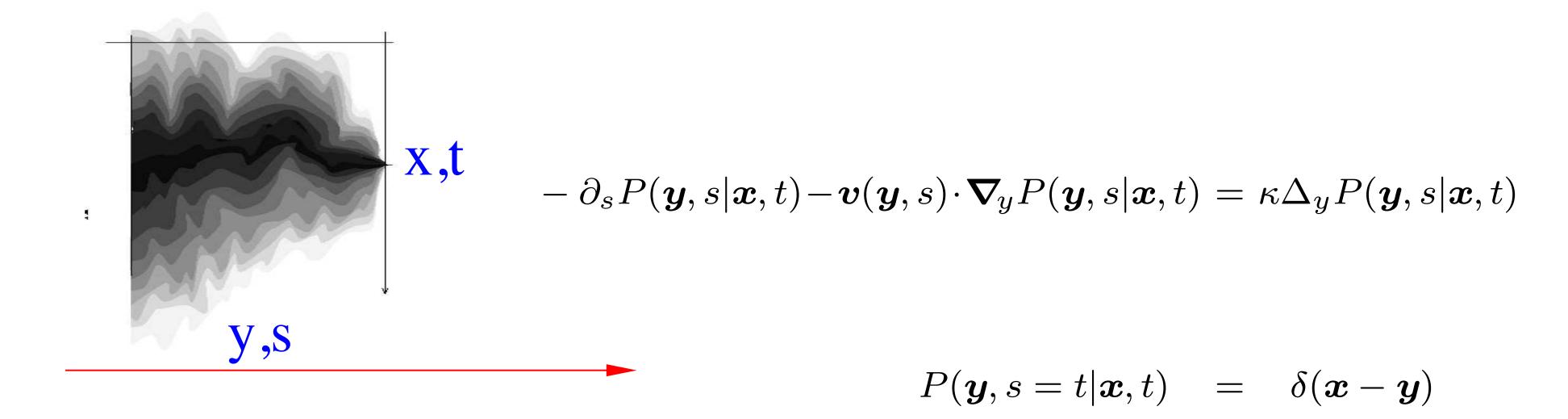
$$\partial_t \theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \theta = \kappa \Delta \theta + F$$

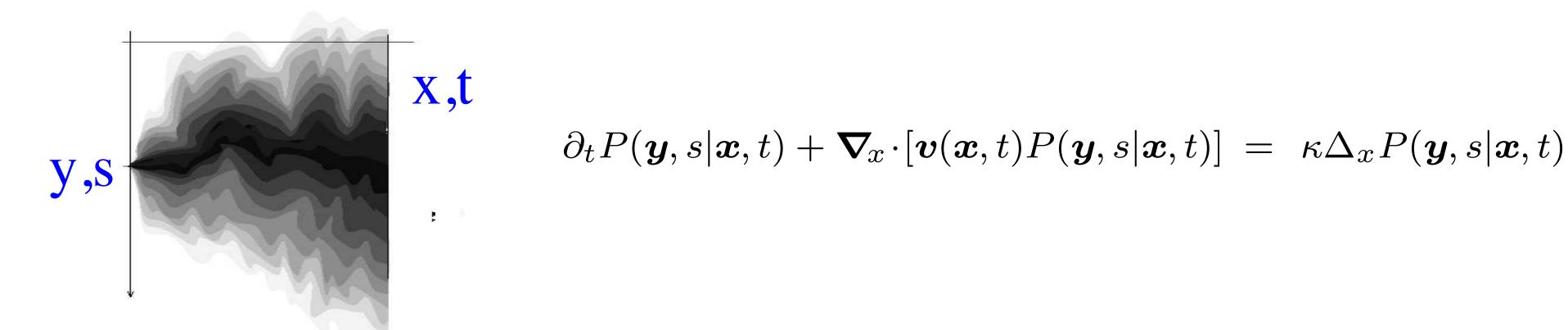
$$\partial_t P(\boldsymbol{y}, s | \boldsymbol{x}, t) + \boldsymbol{\nabla}_x \cdot [\boldsymbol{v}(\boldsymbol{x}, t) P(\boldsymbol{y}, s | \boldsymbol{x}, t)] = \kappa \Delta_x P(\boldsymbol{y}, s | \boldsymbol{x}, t)$$

Note that in passive scalars the propagator and the forcing are independent

Backward & Forward propagator

Backward propagator

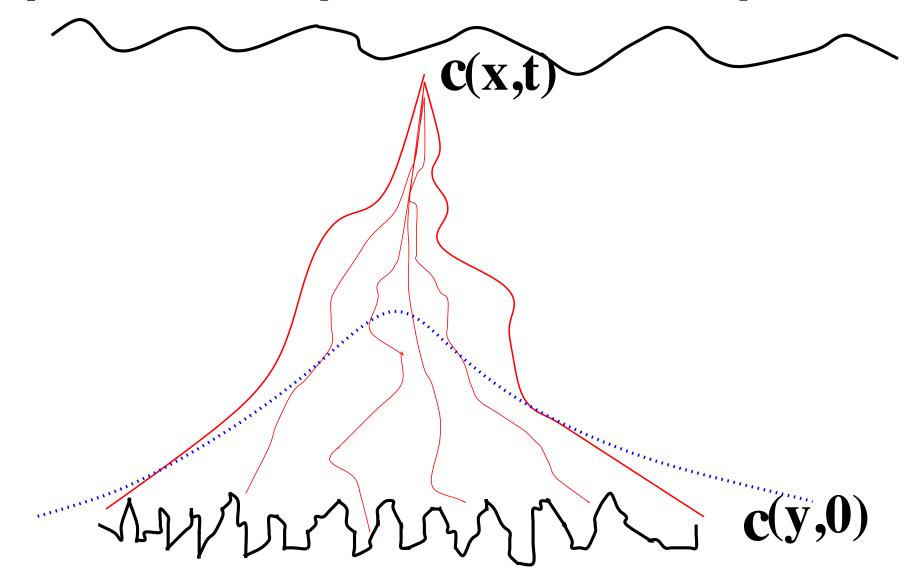




Forwad propagator

Explosive separation —>dissipative anomaly

Non-uniqueness of paths \Longrightarrow dissipative anomaly



$$\frac{d}{dt}c^{2}(t) = -\epsilon_{c}$$

$$\kappa \to 0 \qquad \epsilon_{c} \neq 0$$

non-smooth flows

Since the scalar forcing and the Lagrangian paths are uncorrelated the existence of many paths implies the blurring of the initial scalar field as times goes on

smooth flows

Lagrangian paths are unique and for dissipation to take place a non zero molecular diffusivity is needed

Explosive separation \(\iiii) dissipative anomaly

Eulerian

Lagrangian

$$\partial_t c + \boldsymbol{v} \cdot \boldsymbol{\nabla} c = \kappa \Delta \, c + f_c$$

$$\frac{\mathrm{d}\boldsymbol{\rho}(s)}{\mathrm{d}s} = \boldsymbol{v}(\boldsymbol{\rho}(s), s) + \sqrt{2\kappa}\dot{\boldsymbol{w}}(s), \qquad \boldsymbol{\rho}(t) = \boldsymbol{x} \qquad \frac{\mathrm{d}\boldsymbol{\phi}^{\boldsymbol{w}}(s)}{\mathrm{d}s} = f_c(\boldsymbol{\rho}(s), s)$$

$$o(t) = x \qquad \frac{\mathrm{d}\phi^w}{\mathrm{d}t}$$

$$\frac{\mathrm{d}\phi^{w}(s)}{\mathrm{d}s} = f_{c}(\boldsymbol{\rho}(s), s)$$

$$\langle f_c(\mathbf{x}_1, t) f_c(\mathbf{x}_2, t') \rangle = \delta(t - t') \mathcal{F}(|\mathbf{x}_1 - \mathbf{x}_2|/\ell_f)$$

$$c(\mathbf{x},t) = \langle \phi^{\mathbf{w}}(t) \rangle_{\mathbf{w}} = \left\langle \int_0^t \mathrm{d}s \, f_c(\boldsymbol{\rho}(s),s) \right\rangle_{\mathbf{w}}.$$

$$\langle c^2(\boldsymbol{x},t)\rangle = \left\langle \int_0^t \int_0^t \mathrm{d}s_1 \, \mathrm{d}s_2 f_c(\boldsymbol{\rho}(s_1;\boldsymbol{x},t)) f_c(\boldsymbol{\rho}(s_2;\boldsymbol{x},t)) \right\rangle = \left\langle \left(\int_0^t \mathrm{d}s f_c(\boldsymbol{\rho}(s;\boldsymbol{x},t)) \right)^2 \right\rangle$$

due to delta correlation we may think $\langle c^2(x,t)\rangle \propto t$

Explosive separation \(\iiii) dissipative anomaly

Eulerian

Lagrangian

$$\partial_t c + \boldsymbol{v} \cdot \boldsymbol{\nabla} c = \kappa \Delta \, c + f_c$$

$$\frac{\mathrm{d}\boldsymbol{\rho}(s)}{\mathrm{d}s} = \boldsymbol{v}(\boldsymbol{\rho}(s), s) + \sqrt{2\kappa}\dot{\boldsymbol{w}}(s), \qquad \boldsymbol{\rho}(t) = \boldsymbol{x} \qquad \frac{\mathrm{d}\boldsymbol{\phi}^{\boldsymbol{w}}(s)}{\mathrm{d}s} = f_c(\boldsymbol{\rho}(s), s)$$

$$\rho(t) = x$$

$$\frac{\mathrm{d}\boldsymbol{\phi}^{\boldsymbol{w}}(s)}{\mathrm{d}s} = f_c(\boldsymbol{\rho}(s), s)$$

$$\langle f_c(\mathbf{x}_1, t) f_c(\mathbf{x}_2, t') \rangle = \delta(t - t') \mathcal{F}(|\mathbf{x}_1 - \mathbf{x}_2|/\ell_f)$$

$$c(\mathbf{x},t) = \langle \phi^{\mathbf{w}}(t) \rangle_{\mathbf{w}} = \left\langle \int_0^t \mathrm{d}s \, f_c(\boldsymbol{\rho}(s),s) \right\rangle_{\mathbf{w}}$$

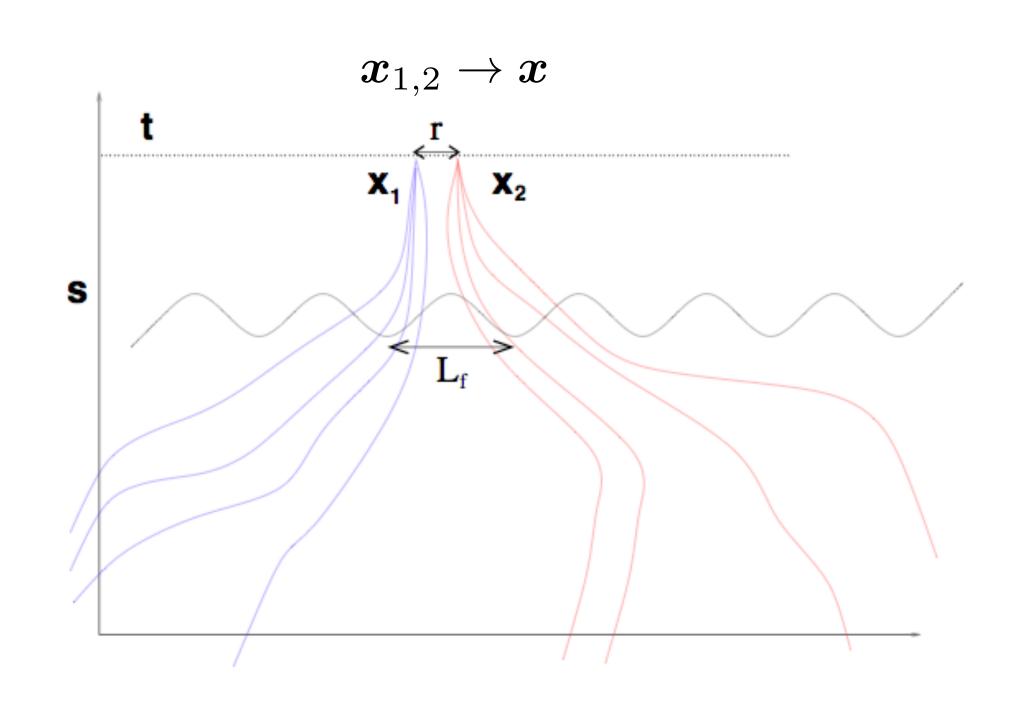
$$\langle c^2(\boldsymbol{x},t)\rangle = \left\langle \int_0^t \int_0^t \mathrm{d}s_1 \, \mathrm{d}s_2 f_c(\boldsymbol{\rho}(s_1;\boldsymbol{x},t)) f_c(\boldsymbol{\rho}(s_2;\boldsymbol{x},t)) \right\rangle = \left\langle \left(\int_0^t \mathrm{d}s f_c(\boldsymbol{\rho}(s;\boldsymbol{x},t)) \right)^2 \right\rangle$$

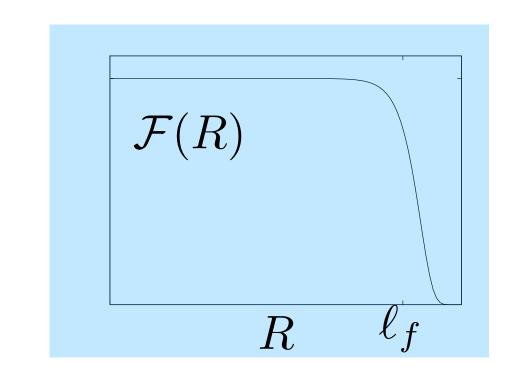
due to delta correlation we may think $\langle c^2(x,t)\rangle \propto t$

$$\langle c^2(\boldsymbol{x},t)\rangle = \int_0^t \mathrm{d}s \iint \langle P_2(\boldsymbol{y}_1,\,\boldsymbol{y}_2,\,s|\boldsymbol{x},\boldsymbol{x},t)\rangle_v \mathcal{F}(|\boldsymbol{y}_1-\boldsymbol{y}_2|/\ell_f)\,\mathrm{d}\boldsymbol{y}_1\,\mathrm{d}\boldsymbol{y}_2.$$

Explosive separation —>dissipative anomaly

$$\langle c^2(\boldsymbol{x},t)\rangle = \int_0^t \mathrm{d}s \iint \langle P_2(\boldsymbol{y}_1, \boldsymbol{y}_2, s|\boldsymbol{x}, \boldsymbol{x}, t)\rangle_v \mathcal{F}(|\boldsymbol{y}_1 - \boldsymbol{y}_2|/\ell_f) \,\mathrm{d}\boldsymbol{y}_1 \,\mathrm{d}\boldsymbol{y}_2.$$





The time integral is cut off at $|t-s|\gg \mathcal{T}_{\ell_f}$ which is the time for two coinciding paths to separate (backward in time) to a distance of order \mathcal{C}_f

non uniqueness → dissipative anomaly

$$\partial_t \Theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \Theta = \kappa \Delta \Theta + f_{\Theta} \qquad \frac{\frac{\mathrm{d} \boldsymbol{\rho}(t)}{\mathrm{d}t} = \boldsymbol{v}(\boldsymbol{\rho}(t), t) + \sqrt{2\kappa} \dot{\boldsymbol{w}},}{\frac{\mathrm{d} \vartheta(t)}{\mathrm{d}t} = f_{\Theta}(\boldsymbol{\rho}(t), t).}$$

$$\partial_t \Theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \Theta = \kappa \Delta \Theta + f_{\Theta}$$

$$\frac{\mathrm{d}\boldsymbol{\rho}(t)}{\mathrm{d}t} = \boldsymbol{v}(\boldsymbol{\rho}(t), t) + \sqrt{2\kappa}\dot{\boldsymbol{w}},$$

$$\frac{\mathrm{d}\vartheta(t)}{\mathrm{d}t} = f_{\Theta}(\boldsymbol{\rho}(t), t).$$

But now we do not condition on the final position, let us consider all paths and averaging over those landing in x,t we have

$$\Theta(\mathbf{x},t) = \langle \vartheta(t) \rangle_{\mathbf{w}}$$

$$\partial_t \Theta + \boldsymbol{v} \cdot \nabla \Theta = \kappa \Delta \Theta + f_{\Theta} \qquad \frac{\frac{\mathrm{d}\boldsymbol{\rho}(t)}{\mathrm{d}t} = \boldsymbol{v}(\boldsymbol{\rho}(t), t) + \sqrt{2\kappa} \dot{\boldsymbol{w}},}{\frac{\mathrm{d}\boldsymbol{\vartheta}(t)}{\mathrm{d}t} = f_{\Theta}(\boldsymbol{\rho}(t), t).}$$

But now we do not condition on the final position, let us consider all paths and averaging over those landing in x,t we have

$$\Theta(\mathbf{x},t) = \langle \vartheta(t) \rangle_{\mathbf{w}}$$

Be $P(x, \vartheta, t | x_0, \vartheta_0, 0)$ the prob to start in x_0 with $\vartheta_0 = \Theta(x_0, 0)$ and to land in x at time t carrying a scalar value ϑ

$$\partial_t P + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} P + f_{\Theta} \nabla_{\vartheta} P = \kappa \Delta P \qquad P(\boldsymbol{x}, \vartheta, t | \boldsymbol{x}_0, \vartheta_0, 0) = \delta(\boldsymbol{x} - \boldsymbol{x}_0) \delta(\vartheta - \vartheta_0)$$

$$\vartheta_0 = \Theta(\boldsymbol{x}, 0)$$

$$\partial_t \Theta + \mathbf{v} \cdot \nabla \Theta = \kappa \Delta \Theta + f_{\Theta} \qquad \frac{\frac{\mathrm{d} \boldsymbol{\rho}(t)}{\mathrm{d}t} = \mathbf{v}(\boldsymbol{\rho}(t), t) + \sqrt{2\kappa} \dot{\mathbf{w}},}{\frac{\mathrm{d} \boldsymbol{\vartheta}(t)}{\mathrm{d}t} = f_{\Theta}(\boldsymbol{\rho}(t), t).}$$

But now we do not condition on the final position, let us consider all paths and averaging over those landing in x,t we have

$$\Theta(\mathbf{x},t) = \langle \vartheta(t) \rangle_{\mathbf{w}}$$

Be $P(x, \vartheta, t | x_0, \vartheta_0, 0)$ the prob to start in x_0 with $\theta_0 = \Theta(x_0, 0)$ and to land in x at time t carrying a scalar value ϑ

$$\partial_t P + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} P + f_{\Theta} \nabla_{\vartheta} P = \kappa \Delta P$$

$$P(\mathbf{x}, \vartheta, t | \mathbf{x}_0, \vartheta_0, 0) = \delta(\mathbf{x} - \mathbf{x}_0)\delta(\vartheta - \vartheta_0)$$

$$\vartheta_0 = \Theta(\mathbf{x}, 0)$$

$$\mathcal{P}(\mathbf{x}, \vartheta, t) = \int P(\mathbf{x}, \vartheta, t | \mathbf{x}_0, \Theta(\mathbf{x}_0, 0), 0) \, d\mathbf{x}_0$$

$$\partial_t \Theta + \boldsymbol{v} \cdot \nabla \Theta = \kappa \Delta \Theta + f_{\Theta} \qquad \frac{\frac{\mathrm{d}\boldsymbol{\rho}(t)}{\mathrm{d}t} = \boldsymbol{v}(\boldsymbol{\rho}(t), t) + \sqrt{2\kappa} \dot{\boldsymbol{w}},}{\frac{\mathrm{d}\boldsymbol{\vartheta}(t)}{\mathrm{d}t} = f_{\Theta}(\boldsymbol{\rho}(t), t).}$$

But now we do not condition on the final position, let us consider all paths and averaging over those landing in x,t we have

$$\Theta(\mathbf{x},t) = \langle \vartheta(t) \rangle_{\mathbf{w}}$$

Be $P(x, \vartheta, t | x_0, \vartheta_0, 0)$ the prob to start in x_0 with $\vartheta_0 = \Theta(x_0, 0)$ and to land in x at time t carrying a scalar value ϑ

$$\partial_t P + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} P + f_{\Theta} \nabla_{\vartheta} P = \kappa \Delta P$$

$$P(\boldsymbol{x}, \vartheta, t | \boldsymbol{x}_0, \vartheta_0, 0) = \delta(\boldsymbol{x} - \boldsymbol{x}_0) \delta(\vartheta - \vartheta_0)$$

$$\vartheta_0 = \Theta(\boldsymbol{x}, 0)$$

$$\mathcal{P}(\mathbf{x}, \vartheta, t) = \int P(\mathbf{x}, \vartheta, t | \mathbf{x}_0, \Theta(\mathbf{x}_0, 0), 0) \, d\mathbf{x}_0 \qquad \vartheta(t) = \int_0^t f_{\Theta}(\rho(s), s) \, ds \quad \sigma_{\Theta}^2(\mathbf{x}, t) = \int \vartheta^2 \mathcal{P} \, d\vartheta - (\int \vartheta \mathcal{P} \, d\vartheta)^2$$

$$\partial_t \Theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \Theta = \kappa \Delta \Theta + f_{\Theta} \qquad \frac{\frac{\mathrm{d}\boldsymbol{\rho}(t)}{\mathrm{d}t} = \boldsymbol{v}(\boldsymbol{\rho}(t), t) + \sqrt{2\kappa} \dot{\boldsymbol{w}},}{\frac{\mathrm{d}\boldsymbol{\vartheta}(t)}{\mathrm{d}t} = f_{\Theta}(\boldsymbol{\rho}(t), t).}$$

But now we do not condition on the final position, let us consider all paths and averaging over those landing in x,t we have

$$\Theta(\mathbf{x},t) = \langle \vartheta(t) \rangle_{\mathbf{w}}$$

Be $P(x, \vartheta, t | x_0, \vartheta_0, 0)$ the prob to start in x_0 with $\vartheta_0 = \Theta(x_0, 0)$ and to land in x at time t carrying a scalar value ϑ

$$\partial_t P + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} P + f_{\Theta} \nabla_{\vartheta} P = \kappa \Delta P$$

$$P(\boldsymbol{x}, \vartheta, t | \boldsymbol{x}_0, \vartheta_0, 0) = \delta(\boldsymbol{x} - \boldsymbol{x}_0) \delta(\vartheta - \vartheta_0)$$

$$\vartheta_0 = \Theta(\boldsymbol{x}, 0)$$

$$\mathcal{P}(\mathbf{x}, \vartheta, t) = \int P(\mathbf{x}, \vartheta, t | \mathbf{x}_0, \Theta(\mathbf{x}_0, 0), 0) \, d\mathbf{x}_0 \qquad \vartheta(t) = \int_0^t f_{\Theta}(\rho(s), s) \, ds \quad \sigma_{\Theta}^2(\mathbf{x}, t) = \int \vartheta^2 \mathcal{P} \, d\vartheta - (\int \vartheta \mathcal{P} \, d\vartheta)^2$$

$$\partial_t \sigma_{\Theta}^2(\mathbf{x}, t) + \mathbf{v} \cdot \nabla_{\mathbf{x}} \sigma_{\Theta}^2(\mathbf{x}, t) = \kappa \Delta \sigma_{\Theta}^2(\mathbf{x}, t) + 2\epsilon_{\Theta}(\mathbf{x}, t)$$

$$\partial_t \Theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \Theta = \kappa \Delta \Theta + f_{\Theta} \qquad \frac{\frac{\mathrm{d}\boldsymbol{\rho}(t)}{\mathrm{d}t} = \boldsymbol{v}(\boldsymbol{\rho}(t), t) + \sqrt{2\kappa} \dot{\boldsymbol{w}},}{\frac{\mathrm{d}\boldsymbol{\vartheta}(t)}{\mathrm{d}t} = f_{\Theta}(\boldsymbol{\rho}(t), t).}$$

But now we do not condition on the final position, let us consider all paths and averaging over those landing in x,t we have

$$\Theta(\mathbf{x},t) = \langle \vartheta(t) \rangle_{\mathbf{w}}$$

Be $P(x, \vartheta, t | x_0, \vartheta_0, 0)$ the prob to start in x_0 with $\theta_0 = \Theta(x_0, 0)$ and to land in x at time t carrying a scalar value ϑ

$$\partial_t P + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} P + f_{\Theta} \nabla_{\vartheta} P = \kappa \Delta P$$

$$P(\boldsymbol{x}, \vartheta, t | \boldsymbol{x}_0, \vartheta_0, 0) = \delta(\boldsymbol{x} - \boldsymbol{x}_0) \delta(\vartheta - \vartheta_0)$$

$$\vartheta_0 = \Theta(\boldsymbol{x}, 0)$$

$$\mathcal{P}(\boldsymbol{x},\vartheta,t) = \int P(\boldsymbol{x},\vartheta,t|\boldsymbol{x}_0,\Theta(\boldsymbol{x}_0,0),0) \,\mathrm{d}\boldsymbol{x}_0 \qquad \vartheta(t) = \int_0^t f_{\Theta}(\rho(s),s) \,\mathrm{d}s \quad \sigma_{\Theta}^2(\boldsymbol{x},t) = \int \vartheta^2 \mathcal{P} \,\mathrm{d}\vartheta - (\int \vartheta \mathcal{P} \,\mathrm{d}\vartheta)^2$$

$$\partial_t \sigma_{\Theta}^2(\mathbf{x}, t) + \mathbf{v} \cdot \nabla_{\mathbf{x}} \sigma_{\Theta}^2(\mathbf{x}, t) = \kappa \Delta \sigma_{\Theta}^2(\mathbf{x}, t) + 2\epsilon_{\Theta}(\mathbf{x}, t) \qquad \epsilon_{\Theta}(\mathbf{x}, t) = \kappa |\nabla_{\mathbf{x}} \int \vartheta \mathcal{P}(\mathbf{x}, \vartheta, t) \, d\vartheta|^2$$

$$\partial_t \Theta + \boldsymbol{v} \cdot \boldsymbol{\nabla} \Theta = \kappa \Delta \Theta + f_{\Theta} \qquad \frac{\frac{\mathrm{d} \boldsymbol{\rho}(t)}{\mathrm{d}t} = \boldsymbol{v}(\boldsymbol{\rho}(t), t) + \sqrt{2\kappa} \dot{\boldsymbol{w}},}{\frac{\mathrm{d} \boldsymbol{\vartheta}(t)}{\mathrm{d}t} = f_{\Theta}(\boldsymbol{\rho}(t), t).}$$

But now we do not condition on the final position, let us consider all paths and averaging over those landing in x,t we have

$$\Theta(\mathbf{x},t) = \langle \vartheta(t) \rangle_{\mathbf{w}}$$

Be $P(x, \vartheta, t | x_0, \vartheta_0, 0)$ the prob to start in x_0 with $\theta_0 = \Theta(x_0, 0)$ and to land in x at time t carrying a scalar value ϑ

$$\partial_t P + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} P + f_{\Theta} \nabla_{\vartheta} P = \kappa \Delta P$$

$$P(\boldsymbol{x}, \vartheta, t | \boldsymbol{x}_0, \vartheta_0, 0) = \delta(\boldsymbol{x} - \boldsymbol{x}_0) \delta(\vartheta - \vartheta_0)$$

$$\vartheta_0 = \Theta(\boldsymbol{x}, 0)$$

We average over the initial conditions

$$\mathcal{P}(\mathbf{x}, \vartheta, t) = \int P(\mathbf{x}, \vartheta, t | \mathbf{x}_0, \Theta(\mathbf{x}_0, 0), 0) \, d\mathbf{x}_0 \qquad \vartheta(t) = \int_0^t f_{\Theta}(\rho(s), s) \, ds \quad \sigma_{\Theta}^2(\mathbf{x}, t) = \int \vartheta^2 \mathcal{P} \, d\vartheta - (\int \vartheta \mathcal{P} \, d\vartheta)^2$$

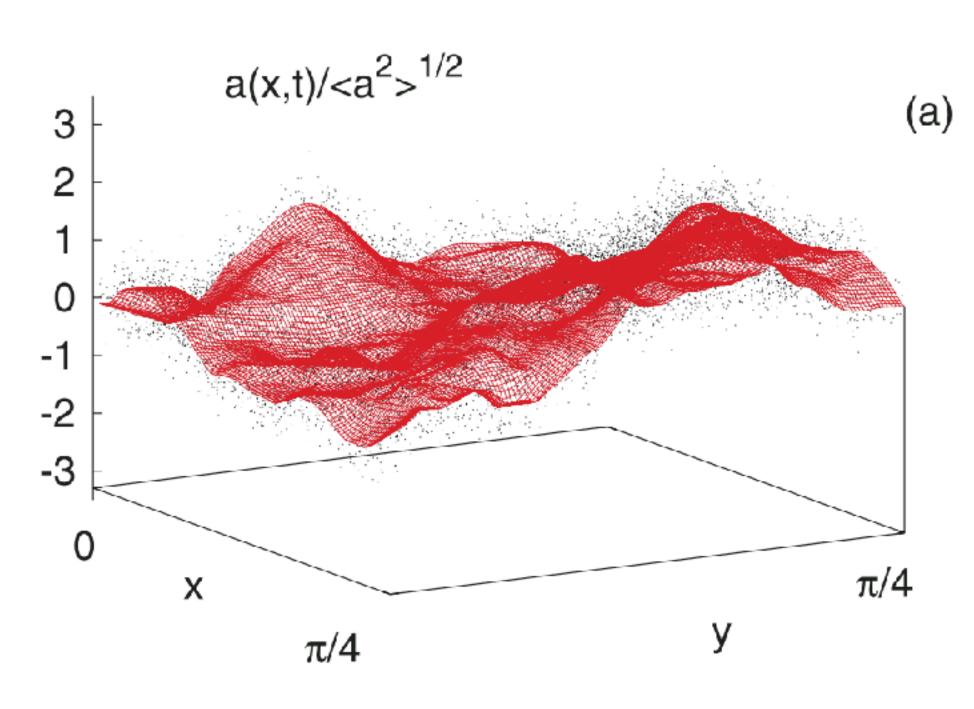
$$\partial_t \sigma_{\Theta}^2(\mathbf{x}, t) + \mathbf{v} \cdot \nabla_{\mathbf{x}} \sigma_{\Theta}^2(\mathbf{x}, t) = \kappa \Delta \sigma_{\Theta}^2(\mathbf{x}, t) + 2\epsilon_{\Theta}(\mathbf{x}, t)$$

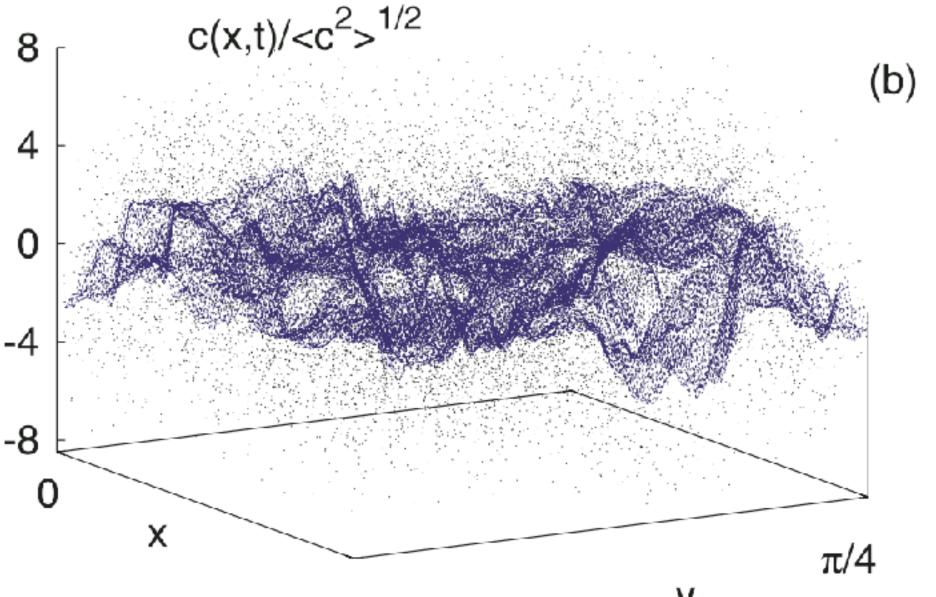
$$\epsilon_{\Theta}(\mathbf{x}, t) = \kappa |\nabla_{\mathbf{x}} \int \vartheta \mathcal{P}(\mathbf{x}, \vartheta, t) \, \mathrm{d}\vartheta|^2$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \sigma_{\Theta}^2(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} = 2 \int \epsilon_{\Theta}(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} = 2\epsilon_{\Theta}$$

A Celani, M. C., A Mazzino, and M Vergassola. New Journal of Physics 6, (2004): 72.

see also T. D. Drivas & G L. Eyink. JFM 829, 153 (2017) & JFM 829, 236 (2017) & JFM 836, 560 (2018)





2D MHD + a passive scalar

$$\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\nabla p + \nu \Delta \boldsymbol{v} - \Delta a \nabla a$$

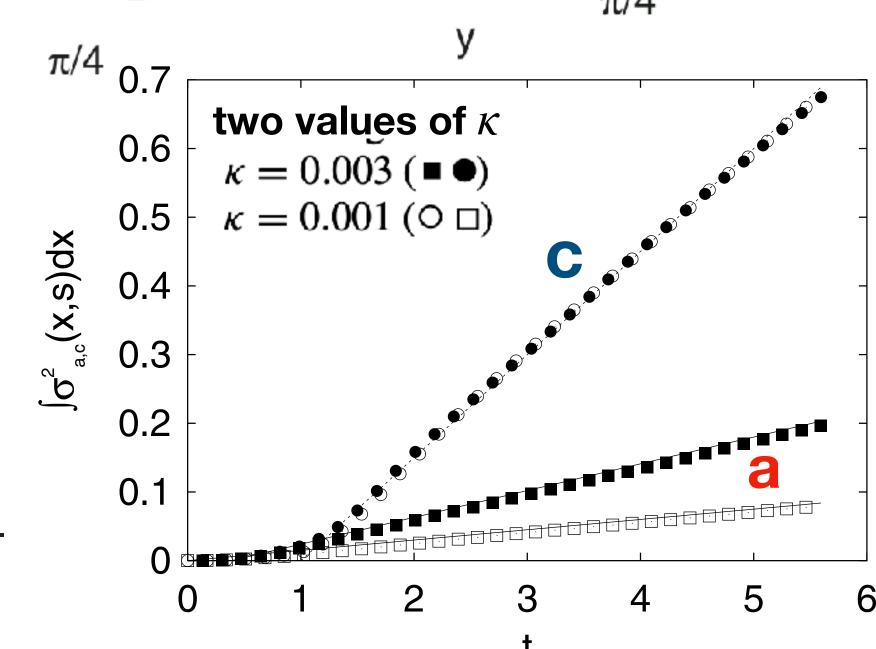
$$\partial_t a + \boldsymbol{v} \cdot \boldsymbol{\nabla} a = \kappa \Delta \, a + f_a$$

$$\partial_t c + \boldsymbol{v} \cdot \boldsymbol{\nabla} c = \kappa \Delta \, c + f_c$$

the magnetic potential a is an inverse cascading active scalar

absence of dissipative anomaly

A Celani, M. C., A Mazzino, and M Vergassola. New Journal of Physics 6, (2004): 72.



Lagrangian origin of Eulerian intermittency in passive scalars

Outline of the main steps

- First we show that moments of scalar increments are connected to N-point correlation functions
- Then we focus on the N=2 correlation function
- Then we consider the Kraichnan model and sketch how to derive an equation for the N-point correlation function
- Then we show that this equation leads us to the zero modes we saw for multiparticle dispersion
- Finally we show that they are responsible for anomalous scaling and universality

$$C_N(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N) = \langle \theta(\boldsymbol{x}_1, t) \theta(\boldsymbol{x}_2, t) \dots \theta(\boldsymbol{x}_N, t) \rangle_{v, F}$$

The goal is to understand the scaling of SF, which are connected to correlation functions:

$$C_N(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N) = \langle \theta(\boldsymbol{x}_1, t) \theta(\boldsymbol{x}_2, t) \dots \theta(\boldsymbol{x}_N, t) \rangle_{v, F}$$

$$S_N(r) = \langle (\theta(\boldsymbol{x}+\boldsymbol{r},t)-\theta(\boldsymbol{x},t))^N \rangle_{v,F} = \langle \left(\int_0^1 \partial_s \theta(x+sr)ds \right)^N \rangle_{v,F} = \int_0^1 ds_1 \dots \int_0^1 ds_N \partial_{s_1} \dots \partial_{s_N} C_N(\boldsymbol{x}+s_1\boldsymbol{r},\dots,\boldsymbol{x}+s_N\boldsymbol{r}) \rangle_{v,F}$$

The goal is to understand the scaling of SF, which are connected to correlation functions:

$$C_N(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N) = \langle \theta(\boldsymbol{x}_1, t) \theta(\boldsymbol{x}_2, t) \dots \theta(\boldsymbol{x}_N, t) \rangle_{v, F}$$

$$S_N(r) = \langle (\theta(\boldsymbol{x}+\boldsymbol{r},t) - \theta(\boldsymbol{x},t))^N \rangle_{v,F} = \langle \left(\int_0^1 \partial_s \theta(x+sr) ds \right)^N \rangle_{v,F} = \int_0^1 ds_1 \dots \int_0^1 ds_N \partial_{s_1} \dots \partial_{s_N} C_N(\boldsymbol{x}+s_1 \boldsymbol{r}, \dots, \boldsymbol{x}+s_N \boldsymbol{r}) \rangle_{v,F}$$

In the following we assume Gaussian, uncorrelated forcing, acting at large scales

$$\langle F(\boldsymbol{x},t)F(\boldsymbol{y},t')\rangle_F = \delta(t-t')\Phi(|\boldsymbol{x}-\boldsymbol{y}|)$$

The goal is to understand the scaling of SF, which are connected to correlation functions:

$$C_N(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N) = \langle \theta(\boldsymbol{x}_1, t) \theta(\boldsymbol{x}_2, t) \dots \theta(\boldsymbol{x}_N, t) \rangle_{v, F}$$

$$S_N(r) = \langle (\theta(\boldsymbol{x}+\boldsymbol{r},t) - \theta(\boldsymbol{x},t))^N \rangle_{v,F} = \langle \left(\int_0^1 \partial_s \theta(x+sr) ds \right)^N \rangle_{v,F} = \int_0^1 ds_1 \dots \int_0^1 ds_N \partial_{s_1} \dots \partial_{s_N} C_N(\boldsymbol{x}+s_1 \boldsymbol{r}, \dots, \boldsymbol{x}+s_N \boldsymbol{r}) \rangle_{v,F}$$

In the following we assume Gaussian, uncorrelated forcing, acting at large scales

$$\langle F(\boldsymbol{x},t)F(\boldsymbol{y},t')\rangle_F = \delta(t-t')\Phi(|\boldsymbol{x}-\boldsymbol{y}|)$$

We start with the 2-points Correlation function and use $\theta({m x},t)=\int^t ds\int d{m y} p_v({m y},s|{m x},t)F({m y},s)$

The goal is to understand the scaling of SF, which are connected to correlation functions:

$$C_N(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N) = \langle \theta(\boldsymbol{x}_1, t) \theta(\boldsymbol{x}_2, t) \dots \theta(\boldsymbol{x}_N, t) \rangle_{v, F}$$

$$S_N(r) = \langle (\theta(\boldsymbol{x}+\boldsymbol{r},t) - \theta(\boldsymbol{x},t))^N \rangle_{v,F} = \langle \left(\int_0^1 \partial_s \theta(x+sr) ds \right)^N \rangle_{v,F} = \int_0^1 ds_1 \dots \int_0^1 ds_N \partial_{s_1} \dots \partial_{s_N} C_N(\boldsymbol{x}+s_1 \boldsymbol{r}, \dots, \boldsymbol{x}+s_N \boldsymbol{r}) \rangle_{v,F}$$

In the following we assume Gaussian, uncorrelated forcing, acting at large scales

$$\langle F(\boldsymbol{x},t)F(\boldsymbol{y},t')\rangle_F = \delta(t-t')\Phi(|\boldsymbol{x}-\boldsymbol{y}|)$$

We start with the 2-points Correlation function and use $\theta(m{x},t) = \int^t ds \int dm{y} p_v(m{y},s|m{x},t) F(m{y},s)$

$$C_2(\boldsymbol{x}_1,\boldsymbol{x}_2;t) = \langle \theta(\boldsymbol{x}_1,t)\theta(\boldsymbol{x}_2,t)\rangle_{F,v} = \int^t \!\! ds_1 \int^t \!\! ds_2 \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 \langle p_v(\boldsymbol{y}_1,s_1|\boldsymbol{x},t)p_v(\boldsymbol{y}_2,s_2|\boldsymbol{y},t)\rangle_v \langle F(\boldsymbol{y}_1,s_1)F(\boldsymbol{y}_2,s_2)\rangle$$

The goal is to understand the scaling of SF, which are connected to correlation functions:

$$C_N(\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_N) = \langle \theta(\boldsymbol{x}_1,t)\theta(\boldsymbol{x}_2,t)\ldots\theta(\boldsymbol{x}_N,t)\rangle_{v,F}$$

$$S_N(r) = \langle (\theta(\boldsymbol{x}+\boldsymbol{r},t) - \theta(\boldsymbol{x},t))^N \rangle_{v,F} = \langle \left(\int_0^1 \partial_s \theta(x+sr) ds \right)^N \rangle_{v,F} = \int_0^1 ds_1 \dots \int_0^1 ds_N \partial_{s_1} \dots \partial_{s_N} C_N(\boldsymbol{x}+s_1 \boldsymbol{r}, \dots, \boldsymbol{x}+s_N \boldsymbol{r}) \rangle_{v,F}$$

In the following we assume Gaussian, uncorrelated forcing, acting at large scales

$$\langle F(\boldsymbol{x},t)F(\boldsymbol{y},t')\rangle_F = \delta(t-t')\Phi(|\boldsymbol{x}-\boldsymbol{y}|)$$

We start with the 2-points Correlation function and use $\theta({m x},t)=\int^{ au}ds\int d{m y} p_v({m y},s|{m x},t)F({m y},s)$

$$C_2(\boldsymbol{x}_1,\boldsymbol{x}_2;t) = \langle \theta(\boldsymbol{x}_1,t)\theta(\boldsymbol{x}_2,t)\rangle_{F,v} = \int^t \!\! ds_1 \int^t \!\! ds_2 \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 \langle p_v(\boldsymbol{y}_1,s_1|\boldsymbol{x},t)p_v(\boldsymbol{y}_2,s_2|\boldsymbol{y},t)\rangle_v \langle F(\boldsymbol{y}_1,s_1)F(\boldsymbol{y}_2,s_2)\rangle$$

NB we could separate the averages on velocity and forcing because we are considering passive scalars

The goal is to understand the scaling of SF, which are connected to correlation functions:

$$C_N(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N) = \langle \theta(\boldsymbol{x}_1, t) \theta(\boldsymbol{x}_2, t) \dots \theta(\boldsymbol{x}_N, t) \rangle_{v, F}$$

$$S_N(r) = \langle (\theta(\boldsymbol{x}+\boldsymbol{r},t) - \theta(\boldsymbol{x},t))^N \rangle_{v,F} = \langle \left(\int_0^1 \partial_s \theta(x+sr) ds \right)^N \rangle_{v,F} = \int_0^1 ds_1 \dots \int_0^1 ds_N \partial_{s_1} \dots \partial_{s_N} C_N(\boldsymbol{x}+s_1 \boldsymbol{r}, \dots, \boldsymbol{x}+s_N \boldsymbol{r}) \rangle_{v,F}$$

In the following we assume Gaussian, uncorrelated forcing, acting at large scales

$$\langle F(\boldsymbol{x},t)F(\boldsymbol{y},t')\rangle_F = \delta(t-t')\Phi(|\boldsymbol{x}-\boldsymbol{y}|)$$

We start with the 2-points Correlation function and use $\theta(m{x},t) = \int^t ds \int dm{y} p_v(m{y},s|m{x},t) F(m{y},s)$

$$C_{2}(\boldsymbol{x}_{1},\boldsymbol{x}_{2};t) = \langle \theta(\boldsymbol{x}_{1},t)\theta(\boldsymbol{x}_{2},t)\rangle_{F,v} = \int^{t} ds_{1} \int^{t} ds_{2} \int d\boldsymbol{y}_{1}d\boldsymbol{y}_{2}\langle p_{v}(\boldsymbol{y}_{1},s_{1}|\boldsymbol{x},t)p_{v}(\boldsymbol{y}_{2},s_{2}|\boldsymbol{y},t)\rangle_{v}\langle F(\boldsymbol{y}_{1},s_{1})F(\boldsymbol{y}_{2},s_{2})\rangle$$

$$= \int^{t} ds_{1} \int^{t} ds_{2} \int d\boldsymbol{y}_{1}d\boldsymbol{y}_{2}\langle p_{v}(\boldsymbol{y}_{1},s_{1}|\boldsymbol{x}_{1},t)p_{v}(\boldsymbol{y}_{2},s_{2}|\boldsymbol{x}_{2},t)\rangle_{v}\Phi(|\boldsymbol{y}_{1}-\boldsymbol{y}_{2}|)\delta(s_{1}-s_{2})$$

$$= \int^{t} ds \int d\boldsymbol{y}_{1}d\boldsymbol{y}_{2}\langle p_{v}(\boldsymbol{y}_{1},s|\boldsymbol{x}_{1},t)p_{v}(\boldsymbol{y}_{2},s|\boldsymbol{x}_{2},t)\rangle_{v}\Phi(|\boldsymbol{y}_{1}-\boldsymbol{y}_{2}|)$$

$$= \int^{t} ds \int d\boldsymbol{y}_{1}d\boldsymbol{y}_{2}P_{2}(\boldsymbol{y}_{1},\boldsymbol{y}_{2};s|\boldsymbol{x}_{1},\boldsymbol{x}_{2};t)\Phi(|\boldsymbol{y}_{1}-\boldsymbol{y}_{2}|)$$

The goal is to understand the scaling of SF, which are connected to correlation functions:

$$C_N(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N) = \langle \theta(\boldsymbol{x}_1, t) \theta(\boldsymbol{x}_2, t) \dots \theta(\boldsymbol{x}_N, t) \rangle_{v, F}$$

$$S_N(r) = \langle (\theta(\boldsymbol{x}+\boldsymbol{r},t) - \theta(\boldsymbol{x},t))^N \rangle_{v,F} = \langle \left(\int_0^1 \partial_s \theta(x+sr) ds \right)^N \rangle_{v,F} = \int_0^1 ds_1 \dots \int_0^1 ds_N \partial_{s_1} \dots \partial_{s_N} C_N(\boldsymbol{x}+s_1\boldsymbol{r},\dots,\boldsymbol{x}+s_N\boldsymbol{r}) \rangle_{v,F}$$

In the following we assume Gaussian, uncorrelated forcing, acting at large scales

$$\langle F(\boldsymbol{x},t)F(\boldsymbol{y},t')\rangle_F = \delta(t-t')\Phi(|\boldsymbol{x}-\boldsymbol{y}|)$$

We start with the 2-points Correlation function and use $\theta(m{x},t) = \int^t ds \int dm{y} p_v(m{y},s|m{x},t) F(m{y},s)$

$$C_{2}(\boldsymbol{x}_{1},\boldsymbol{x}_{2};t) = \langle \theta(\boldsymbol{x}_{1},t)\theta(\boldsymbol{x}_{2},t)\rangle_{F,v} = \int^{t} ds_{1} \int^{t} ds_{2} \int d\boldsymbol{y}_{1}d\boldsymbol{y}_{2}\langle p_{v}(\boldsymbol{y}_{1},s_{1}|\boldsymbol{x},t)p_{v}(\boldsymbol{y}_{2},s_{2}|\boldsymbol{y},t)\rangle_{v}\langle F(\boldsymbol{y}_{1},s_{1})F(\boldsymbol{y}_{2},s_{2})\rangle$$

$$= \int^{t} ds_{1} \int^{t} ds_{2} \int d\boldsymbol{y}_{1}d\boldsymbol{y}_{2}\langle p_{v}(\boldsymbol{y}_{1},s_{1}|\boldsymbol{x}_{1},t)p_{v}(\boldsymbol{y}_{2},s_{2}|\boldsymbol{x}_{2},t)\rangle_{v}\Phi(|\boldsymbol{y}_{1}-\boldsymbol{y}_{2}|)\delta(s_{1}-s_{2})$$

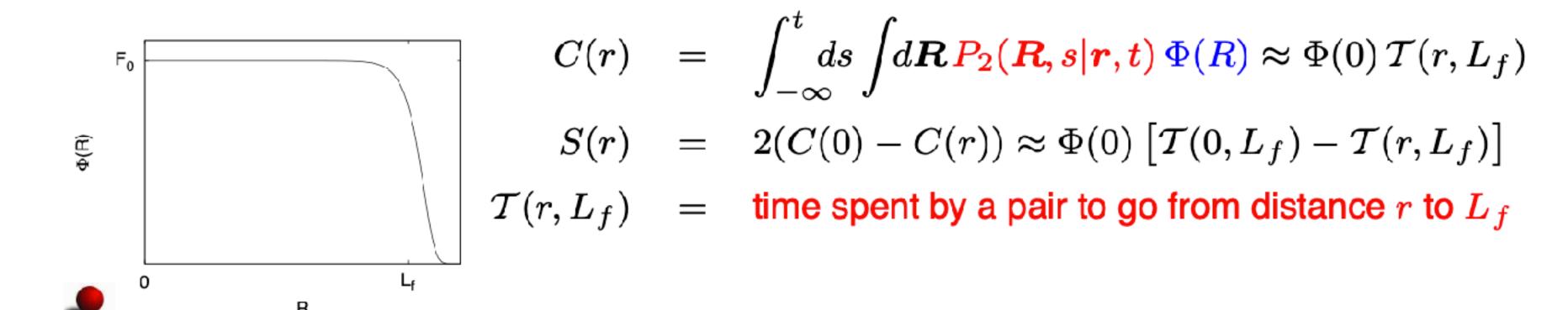
$$= \int^{t} ds \int d\boldsymbol{y}_{1}d\boldsymbol{y}_{2}\langle p_{v}(\boldsymbol{y}_{1},s|\boldsymbol{x}_{1},t)p_{v}(\boldsymbol{y}_{2},s|\boldsymbol{x}_{2},t)\rangle_{v}\Phi(|\boldsymbol{y}_{1}-\boldsymbol{y}_{2}|)$$

$$= \int^{t} ds \int d\boldsymbol{y}_{1}d\boldsymbol{y}_{2}P_{2}(\boldsymbol{y}_{1},\boldsymbol{y}_{2};s|\boldsymbol{x}_{1},\boldsymbol{x}_{2};t)\Phi(|\boldsymbol{y}_{1}-\boldsymbol{y}_{2}|)$$

$$c(\boldsymbol{x},t) = \int_{-\infty}^{t} ds \int d\boldsymbol{y} \, p(\boldsymbol{y},s|\boldsymbol{x},t) \, F_c(\boldsymbol{y},s)$$

$$\langle F_c(y1)F_c(y2)\rangle = \Phi(R)\delta(s_1-s_2) \quad \boldsymbol{y}1 = (\boldsymbol{y}_1,s_1) \quad \boldsymbol{x}1 = (\boldsymbol{x}_1,t_1)$$

$$C(r) = \langle c(x1)c(x2)\rangle_{v,F} = \int \int_{-\infty}^{t} ds_1 ds_2 \int \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 \, \underbrace{\langle p(y1|x1)p(y2|x2)\rangle_{v}}_{P_2(R,s|\boldsymbol{r},t)} \underbrace{\langle F_c(y1)F_c(y2)\rangle_{F}}_{\Phi(R)\delta(s_1-s_2)}$$



RICHARDSON DISPERSION

$$dR/dt = \delta_R v \approx R^{1/3}$$

$$R(t) \approx (R(0)^{2/3} + t)^{3/2} \rightarrow t^{3/2}$$

$$R(t) \sim t^{3/2} \Longrightarrow \mathcal{T}(0,L_f) - \mathcal{T}(r,L_f) \sim r^{2/3}$$
 We find again $S(r) \sim r^{2/3}$

Velocity roughness --> non-uniqueness of Lagrangian paths

2-points correlation function

(Kraichnan)

$$\partial_t P_2(\mathbf{y}_1, \mathbf{y}_2; s | \mathbf{x}_1, \mathbf{x}_2; t) = \mathcal{M}_2 P_2(\mathbf{y}_1, \mathbf{y}_2; s | \mathbf{x}_1, \mathbf{x}_2; t)$$
 (14)

with $P_2(y_1, y_2; t | x_1, x_2; t) = \delta(y_1 - x_1)\delta(y_2 - x_2)$ and \mathcal{M}_2 acting on x_1, x_2 . \mathcal{M}_2 a given operator

$$\partial_t C_2(\boldsymbol{x}_1, \boldsymbol{x}_2; t) = \partial_t \int^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

(Kraichnan)

$$\partial_t P_2(\mathbf{y}_1, \mathbf{y}_2; s | \mathbf{x}_1, \mathbf{x}_2; t) = \mathcal{M}_2 P_2(\mathbf{y}_1, \mathbf{y}_2; s | \mathbf{x}_1, \mathbf{x}_2; t)$$
 (14)

with $P_2(\mathbf{y}_1, \mathbf{y}_2; t | \mathbf{x}_1, \mathbf{x}_2; t) = \delta(\mathbf{y}_1 - \mathbf{x}_1)\delta(\mathbf{y}_2 - \mathbf{x}_2)$ and \mathcal{M}_2 acting on $\mathbf{x}_1, \mathbf{x}_2$. \mathcal{M}_2 a given operator

$$\partial_t C_2(\boldsymbol{x}_1, \boldsymbol{x}_2; t) = \overleftarrow{\partial_t} \int^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

$$= \int^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 \partial_t P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|) + \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; t | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

(Kraichnan)

$$\partial_t P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) = \mathcal{M}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t)$$
(14)
with $P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; t | \boldsymbol{x}_1, \boldsymbol{x}_2; t) = \delta(\boldsymbol{y}_1 - \boldsymbol{x}_1) \delta(\boldsymbol{y}_2 - \boldsymbol{x}_2)$ and \mathcal{M}_2 acting on $\boldsymbol{x}_1, \boldsymbol{x}_2$. \mathcal{M}_2 a given operator
$$\partial_t C_2(\boldsymbol{x}_1, \boldsymbol{x}_2; t) = \frac{\partial}{\partial t} \int^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

$$= \int^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 \partial_t P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|) + \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; t | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

$$= \int^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 \mathcal{M}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|) + \Phi(|\boldsymbol{x}_1 - \boldsymbol{x}_2|)$$

(Kraichnan)

 $\partial_t P_2(y_1, y_2; s | x_1, x_2; t) = \mathcal{M}_2 P_2(y_1, y_2; s | x_1, x_2; t)$

with
$$P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; t | \boldsymbol{x}_1, \boldsymbol{x}_2; t) = \delta(\boldsymbol{y}_1 - \boldsymbol{x}_1)\delta(\boldsymbol{y}_2 - \boldsymbol{x}_2)$$
 and \mathcal{M}_2 acting on $\boldsymbol{x}_1, \boldsymbol{x}_2$. \mathcal{M}_2 a given operator
$$\partial_t C_2(\boldsymbol{x}_1, \boldsymbol{x}_2; t) = \frac{1}{2} \int_0^t \int_0^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

$$= \int_0^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 \partial_t P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|) + \int_0^t d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; t | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

$$= \int_0^t ds \int_0^t d\boldsymbol{y}_1 d\boldsymbol{y}_2 \mathcal{M}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|) + \Phi(|\boldsymbol{x}_1 - \boldsymbol{x}_2|)$$

$$= \mathcal{M}_2 \int_0^t ds \int_0^t d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|) + \Phi(|\boldsymbol{x}_1 - \boldsymbol{x}_2|)$$

(14)

(Kraichnan)

 $\partial_t P_2(y_1, y_2; s | x_1, x_2; t) = \mathcal{M}_2 P_2(y_1, y_2; s | x_1, x_2; t)$

with
$$P_2(\boldsymbol{y}_1, \boldsymbol{y}_2;t|\boldsymbol{x}_1, \boldsymbol{x}_2;t) = \delta(\boldsymbol{y}_1 - \boldsymbol{x}_1)\delta(\boldsymbol{y}_2 - \boldsymbol{x}_2)$$
 and \mathcal{M}_2 acting on $\boldsymbol{x}_1, \boldsymbol{x}_2$. \mathcal{M}_2 a given operator
$$\partial_t C_2(\boldsymbol{x}_1, \boldsymbol{x}_2;t) = \frac{1}{2} \int_0^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2;s|\boldsymbol{x}_1, \boldsymbol{x}_2;t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

$$= \int_0^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 \partial_t P_2(\boldsymbol{y}_1, \boldsymbol{y}_2;s|\boldsymbol{x}_1, \boldsymbol{x}_2;t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|) + \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2;t|\boldsymbol{x}_1, \boldsymbol{x}_2;t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

$$= \int_0^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 \mathcal{M}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2;s|\boldsymbol{x}_1, \boldsymbol{x}_2;t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|) + \Phi(|\boldsymbol{x}_1 - \boldsymbol{x}_2|)$$

$$= \mathcal{M}_2 \int_0^t ds \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2;s|\boldsymbol{x}_1, \boldsymbol{x}_2;t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|) + \Phi(|\boldsymbol{x}_1 - \boldsymbol{x}_2|)$$

$$= \mathcal{M}_2 C_2(\boldsymbol{x}_1, \boldsymbol{x}_2;t) + \Phi(|\boldsymbol{x}_1 - \boldsymbol{x}_2|)$$

(14)

K. Gawedzki "Soluble models of turbulent advection" arXiv preprint nlin/0207058 (2002).

A simpler derivation

Assume to know $C_2(\boldsymbol{x}_1,\boldsymbol{x}_2;s)$ what is its value at time t?

$$C_2(\boldsymbol{x}_1, \boldsymbol{x}_2; t) = \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) C_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s) + \int_s^t d\tau \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

K. Gawedzki "Soluble models of turbulent advection" arXiv preprint nlin/0207058 (2002).

A simpler derivation

Assume to know $C_2(\boldsymbol{x}_1,\boldsymbol{x}_2;s)$ what is its value at time t?

$$C_{2}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}; t) = \int d\boldsymbol{y}_{1} d\boldsymbol{y}_{2} P_{2}(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}; s | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}; t) C_{2}(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}; s) + \int_{s}^{t} d\tau \int d\boldsymbol{y}_{1} d\boldsymbol{y}_{2} P_{2}(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}; s | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}; t) \Phi(|\boldsymbol{y}_{1} - \boldsymbol{y}_{2}|)$$

$$\partial_{t} C_{2}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}; t) = \mathcal{M}_{2} \left[\int d\boldsymbol{y}_{1} d\boldsymbol{y}_{2} P_{2}(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}; s | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}; t) C_{2}(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}; s) + \int_{s}^{t} d\tau \int d\boldsymbol{y}_{1} d\boldsymbol{y}_{2} P_{2}(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}; s | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}; t) \Phi(|\boldsymbol{y}_{1} - \boldsymbol{y}_{2}|) \right]$$

$$+ \Phi(|\boldsymbol{x}_{1} - \boldsymbol{x}_{2}|) = \mathcal{M}_{2} C_{2}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}; t) + \Phi(|\boldsymbol{x}_{1} - \boldsymbol{x}_{2}|)$$

K. Gawedzki "Soluble models of turbulent advection" arXiv preprint nlin/0207058 (2002).

A simpler derivation

Assume to know $C_2(\boldsymbol{x}_1,\boldsymbol{x}_2;s)$ what is its value at time t?

$$C_2(\boldsymbol{x}_1, \boldsymbol{x}_2; t) = \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) C_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s) + \int_s^t d\tau \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

K. Gawedzki "Soluble models of turbulent advection" arXiv preprint nlin/0207058 (2002).

A simpler derivation

Assume to know $C_2(\boldsymbol{x}_1,\boldsymbol{x}_2;s)$ what is its value at time t?

$$C_2(\boldsymbol{x}_1, \boldsymbol{x}_2; t) = \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) C_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s) + \int_s^t d\tau \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

Now let's do a step forward: consider $C_N(\underline{x};t) = \langle \theta(x_1,t) \dots \theta(x_N,t) \rangle_{v,F}$ with $\underline{x} = (x_1, \dots, x_N)$. Generalizing the result for C_2 we can write:

$$C_N(\underline{\boldsymbol{x}};t) = \int d\underline{\boldsymbol{y}} P_N(\underline{\boldsymbol{y}};s|\underline{\boldsymbol{x}};t) C_N(\underline{\boldsymbol{y}};s) + \int_s^t d\tau \int d\underline{\boldsymbol{y}} P_N(\underline{\boldsymbol{y}};s|\underline{\boldsymbol{x}};t) (C_{N-2} \otimes \Phi)(\underline{\boldsymbol{y}},\tau)$$

where

$$(C_{N-2}\otimes\Phi)(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N,\tau)=\sum_{n< m}C_{N-2}(\boldsymbol{x}_1,\ldots[\hat{n}]\ldots[\hat{m}]\ldots,\boldsymbol{x}_N)\Phi(|\boldsymbol{x}_n-\boldsymbol{x}_m|)$$

K. Gawedzki "Soluble models of turbulent advection" arXiv preprint nlin/0207058 (2002).

A simpler derivation

Assume to know $C_2(\boldsymbol{x}_1,\boldsymbol{x}_2;s)$ what is its value at time t?

$$C_2(\boldsymbol{x}_1, \boldsymbol{x}_2; t) = \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) C_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s) + \int_s^t d\tau \int d\boldsymbol{y}_1 d\boldsymbol{y}_2 P_2(\boldsymbol{y}_1, \boldsymbol{y}_2; s | \boldsymbol{x}_1, \boldsymbol{x}_2; t) \Phi(|\boldsymbol{y}_1 - \boldsymbol{y}_2|)$$

Now let's do a step forward: consider $C_N(\underline{x};t) = \langle \theta(x_1,t) \dots \theta(x_N,t) \rangle_{v,F}$ with $\underline{x} = (x_1, \dots, x_N)$. Generalizing the result for C_2 we can write:

$$C_N(\underline{\boldsymbol{x}};t) = \int d\underline{\boldsymbol{y}} P_N(\underline{\boldsymbol{y}};s|\underline{\boldsymbol{x}};t) C_N(\underline{\boldsymbol{y}};s) + \int_s^t d\tau \int d\underline{\boldsymbol{y}} P_N(\underline{\boldsymbol{y}};s|\underline{\boldsymbol{x}};t) (C_{N-2} \otimes \Phi)(\underline{\boldsymbol{y}},\tau)$$

where

$$(C_{N-2}\otimes\Phi)(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N,\tau)=\sum_{n< m}C_{N-2}(\boldsymbol{x}_1,\ldots[\hat{n}]\ldots[\hat{m}]\ldots[\hat{m}]\ldots,\boldsymbol{x}_N)\Phi(|\boldsymbol{x}_n-\boldsymbol{x}_m|)$$

As for N=2 doing the time derivative one obtains

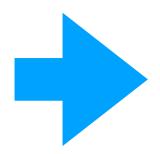
$$\partial_t C_N = \mathcal{M}_N C_N + (C_{N-2} \otimes \Phi)$$

Kraichnan model

$$P_N = P_N(\underline{r}; s | \underline{R}; t)$$
 $\partial_t P_N = \mathcal{M}_N P_N$

$$\partial_t P_N = \mathcal{M}_N P_N$$

$$C_N(\underline{m{R}};t)$$



$$\partial_t C_N = \mathcal{M}_N C_N + C_{N-2} \otimes \Phi$$

As we said this require special properties of the velocity field: Gaussianity and time-uncorrelation

$$\langle v_{\alpha}(\boldsymbol{x},t)v_{\beta}(\boldsymbol{x}+\boldsymbol{r},t')\rangle_{v}=\delta(t-t')D_{\alpha,\beta}(\boldsymbol{x}-\boldsymbol{y})$$
 incompressibility $\partial_{\alpha}D_{\alpha,\beta}=0$

(in the inertial range)
$$\eta \ll r \ll L_v$$
 $d_{\alpha,\beta}($

(in the inertial range)
$$\eta \ll r \ll L_v$$
 $d_{\alpha,\beta}(\boldsymbol{r}) = D_1 r^{\xi} \left((d-1+\xi) \delta_{\alpha\beta} - \xi \frac{r_{\alpha} r_{\beta}}{r^2} \right)$

$$\mathcal{M}_{N} = -\sum_{n < m} d_{\alpha\beta}(\mathbf{r}_{n} - \mathbf{r}_{m}) \partial_{r_{n,\alpha}} \partial_{r_{m,\beta}} + \kappa \sum_{n=1}^{N} \Delta_{r_{n}} + D_{0} \delta_{\alpha\beta} \left(\sum_{n=1}^{N} \partial_{r_{n,\alpha}} \right)^{2}$$

not apply to space invariant functions

$$d_{\alpha,\beta}(\mathbf{r}) = D_1 r^{\xi} \left((d-1+\xi)\delta_{\alpha\beta} - \xi \frac{r_{\alpha}r_{\beta}}{r^2} \right)$$

$$\mathcal{M}_N = -\sum_{n < m} d_{\alpha\beta}(\mathbf{r}_n - \mathbf{r}_m) \partial_{r_{n,\alpha}} \partial_{r_{m,\beta}} + \kappa \sum_{n=1}^{N} \Delta_{r_n}$$

$$\partial_t C_N = \mathcal{M}_N C_N + C_{N-2} \otimes \Phi$$
 at stationarity

$$-\mathcal{M}_N C_N = C_{N-2} \otimes \Phi$$

Dimensional analysis

$$d_{\alpha,\beta}(\mathbf{r}) = D_1 r^{\xi} \left((d-1+\xi)\delta_{\alpha\beta} - \xi \frac{r_{\alpha}r_{\beta}}{r^2} \right)$$

$$\mathcal{M}_N = -\sum_{n < m} d_{\alpha\beta}(\mathbf{r}_n - \mathbf{r}_m) \partial_{r_{n,\alpha}} \partial_{r_{m,\beta}} + \kappa \sum_{n=1}^{N} \Delta_{r_n}$$

$$\partial_t C_N = \mathcal{M}_N C_N + C_{N-2} \otimes \Phi$$
 at stationarity

$$-\mathcal{M}_N C_N = C_{N-2} \otimes \Phi$$

$$d_{\alpha,\beta}(\mathbf{r}) = D_1 r^{\xi} \left((d-1+\xi)\delta_{\alpha\beta} - \xi \frac{r_{\alpha}r_{\beta}}{r^2} \right)$$

$$\mathcal{M}_N = -\sum_{n < m} d_{\alpha\beta}(\mathbf{r}_n - \mathbf{r}_m) \partial_{r_{n,\alpha}} \partial_{r_{m,\beta}} + \kappa \sum_{n=1}^N \Delta_{r_n}$$

$$[\mathcal{M}_N] = L^{\xi - 2}$$

$$\partial_t C_N = \mathcal{M}_N C_N + C_{N-2} \otimes \Phi$$
 at stationarity

$$-\mathcal{M}_N C_N = C_{N-2} \otimes \Phi$$

$$d_{\alpha,\beta}(\mathbf{r}) = D_1 r^{\xi} \left((d-1+\xi)\delta_{\alpha\beta} - \xi \frac{r_{\alpha}r_{\beta}}{r^2} \right)$$

$$\mathcal{M}_N = -\sum_{n < m} d_{lphaeta}(m{r}_n - m{r}_m) \partial_{r_{n,lpha}} \partial_{r_{m,eta}} + \kappa \sum_{n=1}^N \Delta_{r_n}$$

Dimensional analysis

$$[\mathcal{M}_N] = L^{\xi - 2}$$

time $T \sim [M_N]^{-1} \sim L^{2-\xi}$ indeed $\xi = 0$ $T \sim L^2$ as we recover normal diffusion

$$\partial_t C_N = \mathcal{M}_N C_N + C_{N-2} \otimes \Phi$$
 at stationarity

$$-\mathcal{M}_N C_N = C_{N-2} \otimes \Phi$$

$$d_{\alpha,\beta}(\mathbf{r}) = D_1 r^{\xi} \left((d-1+\xi)\delta_{\alpha\beta} - \xi \frac{r_{\alpha}r_{\beta}}{r^2} \right)$$

$$\mathcal{M}_N = -\sum_{n < m} d_{\alpha\beta} (\boldsymbol{r}_n - \boldsymbol{r}_m) \partial_{r_{n,\alpha}} \partial_{r_{m,\beta}} + \kappa \sum_{n=1}^N \Delta_{r_n}$$

$$\partial_t C_N = \mathcal{M}_N C_N + C_{N-2} \otimes \Phi$$
 at stationarity

$$-\mathcal{M}_N C_N = C_{N-2} \otimes \Phi$$

Dimensional analysis

$$[\mathcal{M}_N] = L^{\xi - 2}$$

time $T \sim [M_N]^{-1} \sim L^{2-\xi}$ indeed $\xi = 0$ $T \sim L^2$ as we recover normal diffusion

For small r

$$\mathcal{M}_2 C_2 \sim \Phi(0) \Longrightarrow [C_2] = [\mathcal{M}_2]^{-1} = L^{2-\xi} \sim C(r) \sim r^{2-\xi}$$

$$d_{\alpha,\beta}(\mathbf{r}) = D_1 r^{\xi} \left((d-1+\xi)\delta_{\alpha\beta} - \xi \frac{r_{\alpha}r_{\beta}}{r^2} \right)$$

$$\mathcal{M}_N = -\sum_{n} d_{\alpha\beta}(\mathbf{r}_n - \mathbf{r}_m)\partial_{r_{n,\alpha}}\partial_{r_{m,\beta}} + \kappa \sum_{n} \Delta_{r_n}$$

$$\partial_t C_N = \mathcal{M}_N C_N + C_{N-2} \otimes \Phi$$
 at stationarity

$$-\mathcal{M}_N C_N = C_{N-2} \otimes \Phi$$

Dimensional analysis

$$[\mathcal{M}_N] = L^{\xi - 2}$$

time $T \sim [M_N]^{-1} \sim L^{2-\xi}$ indeed $\xi = 0$ $T \sim L^2$ as we recover normal diffusion

For small r

$$\mathcal{M}_2 C_2 \sim \Phi(0) \Longrightarrow [C_2] = [\mathcal{M}_2]^{-1} = L^{2-\xi} \sim C(r) \sim r^{2-\xi}$$

$$\mathcal{M}_4 C_4 \sim \Phi(0) C_2 \Longrightarrow [C_4] = [\mathcal{M}_4]^{-1} [C_2] = L^{2(2-\xi)}$$

$$d_{\alpha,\beta}(\mathbf{r}) = D_1 r^{\xi} \left((d-1+\xi)\delta_{\alpha\beta} - \xi \frac{r_{\alpha}r_{\beta}}{r^2} \right)$$

$$\mathcal{M}_N = -\sum_{n < m} d_{\alpha\beta}(\mathbf{r}_n - \mathbf{r}_m) \partial_{r_{n,\alpha}} \partial_{r_{m,\beta}} + \kappa \sum_{n=1}^{N} \Delta_{r_n}$$

$$\partial_t C_N = \mathcal{M}_N C_N + C_{N-2} \otimes \Phi$$
 at stationarity

$$-\mathcal{M}_N C_N = C_{N-2} \otimes \Phi$$

Dimensional analysis

$$[\mathcal{M}_N] = L^{\xi - 2}$$

time $T \sim [M_N]^{-1} \sim L^{2-\xi}$ indeed $\xi = 0$ $T \sim L^2$ as we recover normal diffusion

For small r

$$\mathcal{M}_2 C_2 \sim \Phi(0) \Longrightarrow [C_2] = [\mathcal{M}_2]^{-1} = L^{2-\xi} \sim C(r) \sim r^{2-\xi}$$

$$\mathcal{M}_4 C_4 \sim \Phi(0) C_2 \Longrightarrow [C_4] = [\mathcal{M}_4]^{-1} [C_2] = L^{2(2-\xi)}$$

$$\mathcal{M}_N C_N \sim \Phi(0) C_{N-2} \Longrightarrow [C_N] = [\mathcal{M}_N]^{-1} [C_{N-2}] = L^{N(2-\xi)}$$

$$C_N \sim L^{\zeta_N^{dim} = N(2-\xi)}$$

Where does it come the anomalous scaling?

Dominance of Zero Modes

$$-\mathcal{M}_N C_N = C_{N-2} \otimes \Phi$$

The most general solution is given by

$$\mathcal{M}_N Z_N = 0$$

$$C_N = \underbrace{\mathcal{M}_N^{-1} C_{N-2} \otimes \Phi}_{L^{\zeta_N^{dim}}} + Z_N$$

$$L^{\zeta_N^{dim}} \qquad L^{\zeta_N^{a}}$$

$$\zeta_N^a < \zeta_N^{dim} = N(2 - \xi)$$

Dominance of Zero Modes

$$-\mathcal{M}_N C_N = C_{N-2} \otimes \Phi$$

The most general solution is given by

$$\mathcal{M}_N Z_N = 0$$

$$C_N = \mathcal{M}_N^{-1} C_{N-2} \otimes \Phi + Z_N$$

$$L^{\zeta_N^{dim}}$$

$$L^{\zeta_N^a}$$

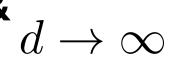
$$\zeta_N^a < \zeta_N^{dim} = N(2 - \xi)$$

Gawdezki & Kupianen $\xi \to 0$

Perturbation around Brownian motion

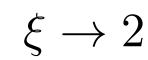
$$\zeta_{N,0} = \frac{N}{2}(2-\xi) - \frac{N(N-2)}{2(d+2)}\xi + \mathcal{O}(\xi^2),$$

Chertkov, Falkovich & $d \to \infty$ Lebedev

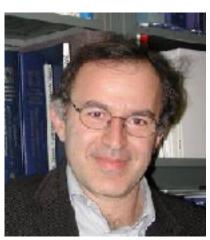


$$\zeta_{N,0} = \frac{N}{2}(2-\xi) - \frac{N(N-2)}{2d}\xi + \mathcal{O}\left(\frac{1}{d^2}\right)$$

Shraiman & Siggia $\xi \to 2$

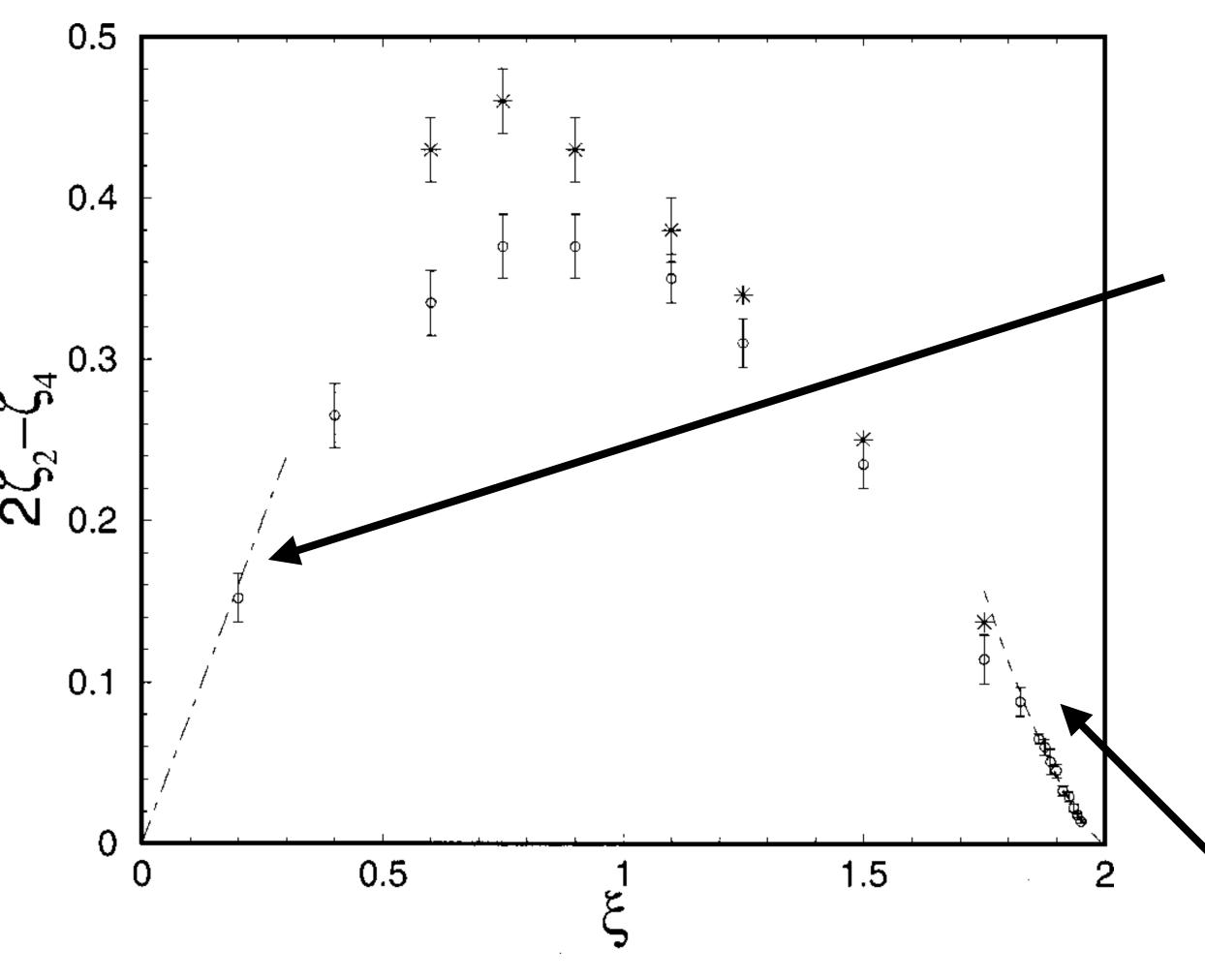


Perturbation around Batchelor limit



also found anomalous exponents for zero modes

Dominance of Zero Modes



Frisch, Mazzino, Vergassola 1998

Gawdezki & Kupianen

Perturbation around Brownian

motion

$$\zeta_{N,0} = \frac{N}{2}(2-\xi) - \frac{N(N-2)}{2(d+2)}\xi + \mathcal{O}(\xi^2),$$

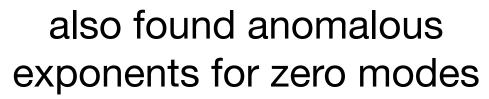
Chertkov, Falkovich & $d \to \infty$ Lebedev

$$\zeta_{N,0} = \frac{N}{2}(2-\xi) - \frac{N(N-2)}{2d}\xi + \mathcal{O}\left(\frac{1}{d^2}\right)$$

Shraiman & Siggia $\xi
ightarrow 2$

Perturbation around Batchelor

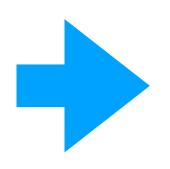
limit

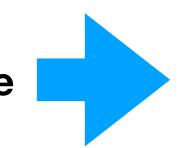


Physical (Lagrangian) interpretation of zero modes

Kraichnan model

$$\langle v_{lpha}(m{x},t)v_{eta}(m{x}+m{r},t')
angle_v=\delta(t-t')D_{lpha,eta}(m{x}-m{y})$$
 Time reversible





Lagrangian trajectories are reversible

For any test function $f(\underline{x})$ of N points we can define the Lagrangian averages

$$\langle f \rangle (t; \underline{\boldsymbol{x}}_0) = \int d\underline{\boldsymbol{x}} P_N(\underline{\boldsymbol{x}}, t | \underline{\boldsymbol{x}}_0, 0) f(\underline{\boldsymbol{x}})$$

If f is a scaling function $f(\lambda\underline{\pmb{x}})=\lambda^{\sigma}f(\underline{\pmb{x}})$ we expect $\langle f \rangle(t;\underline{\pmb{x}}_{\cap}) \sim t^{\sigma/(2-\xi)}$

e.g. Relative dispersion
$$f(\boldsymbol{x}_1, \boldsymbol{x}_2) = ||\boldsymbol{x}_1 - \boldsymbol{x}_2||^2 = R^2$$

$$\langle R^2 \rangle \sim t^{2/(2-\xi)}$$

How does behave the Lagrangian average of zero modes (which are scaling functions of N-points)

$$\langle Z_N \rangle(t; \underline{\boldsymbol{x}}_0) = \int d\underline{\boldsymbol{x}} P_N(\underline{\boldsymbol{x}}, t | \underline{\boldsymbol{x}}_0, 0) Z_N(\underline{\boldsymbol{x}})$$

$$\frac{d}{dt} \langle Z_N \rangle(t; \underline{\boldsymbol{x}}_0) = \int d\underline{\boldsymbol{x}} \partial_t P_N(\underline{\boldsymbol{x}}, t | \underline{\boldsymbol{x}}_0, 0) Z_N(\underline{\boldsymbol{x}}) = \langle \mathcal{M}_N Z_N \rangle(t | 0, \underline{\boldsymbol{x}}_0) = 0!$$

Zero modes are statistically conserved by the Lagrangian flow

e.g.
$$\langle R_{12}^2 - R_{34}^2 \rangle = \langle R_{12}^2 \rangle - \langle R_{34}^2 \rangle = (R_{12}^2(0) + 2Dt) - (R_{34}^2(0) + 2Dt) = const$$
 ($\xi \to 0$ $\mathcal{M}_N \to \Delta_N$ $Z_N \to \text{harmonic polynomials}$

For non-Kraichnan flows?

Celani & Vergassola 2001

passive scalar with a gradient

$$\Theta(\boldsymbol{x},t) = \theta(\boldsymbol{x},t) + \boldsymbol{g} \cdot \boldsymbol{x}$$

$$\partial_t \theta(\boldsymbol{r}, t) + \boldsymbol{v}(\boldsymbol{r}, t) \cdot \nabla \theta(\boldsymbol{r}, t) = \kappa \Delta \theta(\boldsymbol{r}, t) - \boldsymbol{g} \cdot \boldsymbol{v}$$

velocity NS-2D in inverse cascade

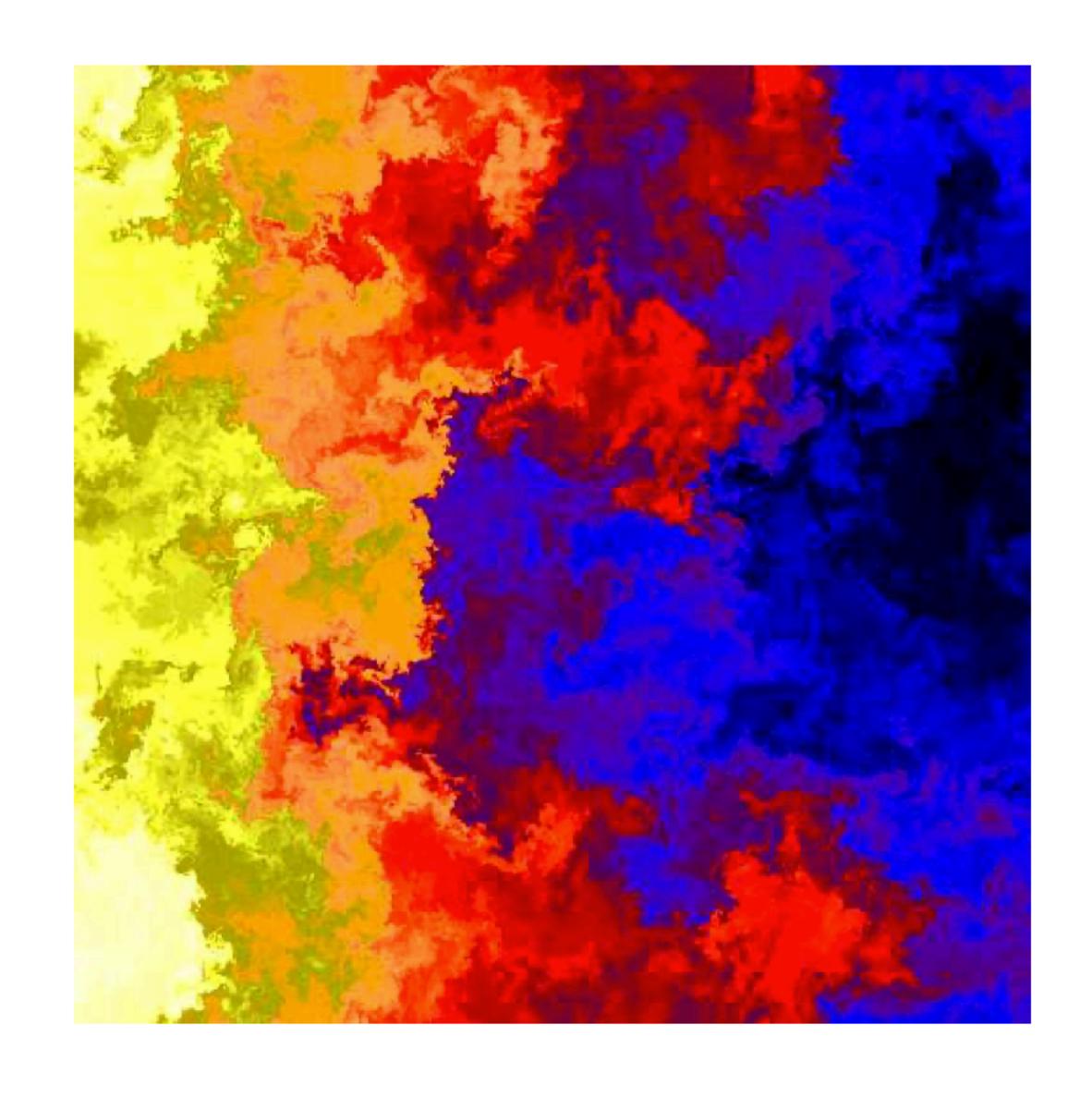
with Gaussian forcing $C_3=0$ with the gradient $C_3\neq 0$

$$S_{2N}^{gauss}(r) \sim S_{2N}^{grad}(r)$$

$$S_{2N+1}^{gauss}(r) = 0$$
 $S_{2N+1}^{grad}(r) \neq 0$

by dimensional arguments

$$S_{2N+1}^{grad}(r) \sim (\boldsymbol{g} \cdot \boldsymbol{r}) S_{2N}^{grad}$$



For non-Kraichnan flows?

Celani & Vergassola 2001

passive scalar with a gradient

$$\Theta(\boldsymbol{x},t) = \theta(\boldsymbol{x},t) + \boldsymbol{g} \cdot \boldsymbol{x}$$

$$\partial_t \theta(\boldsymbol{r}, t) + \boldsymbol{v}(\boldsymbol{r}, t) \cdot \nabla \theta(\boldsymbol{r}, t) = \kappa \Delta \theta(\boldsymbol{r}, t) - \boldsymbol{g} \cdot \boldsymbol{v}$$

universality w.r.t. forcing velocity NS-2D in inverse cascade

with Gaussian forcing $C_3 = 0$

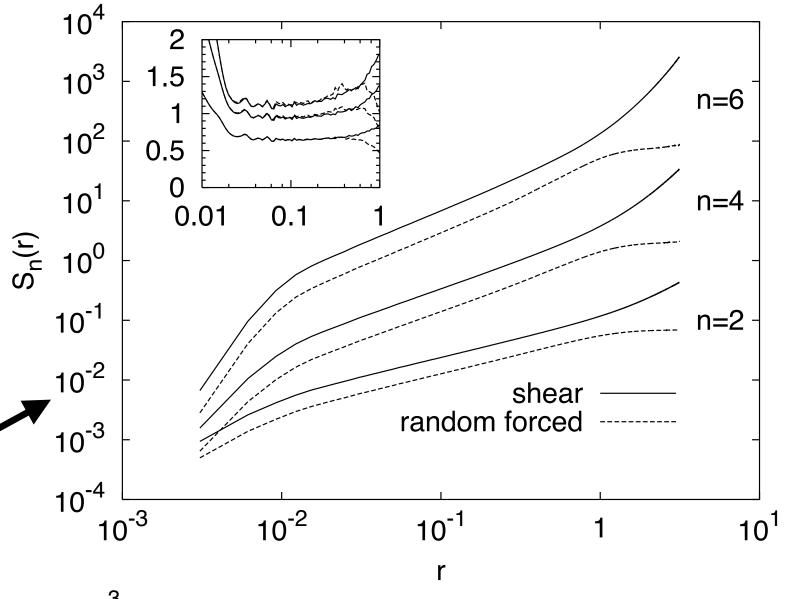
with the gradient $C_3 \neq 0$

$$S_{2N}^{gauss}(r) \sim S_{2N}^{grad}(r)$$

$$S_{2N+1}^{gauss}(r) = 0$$
 $S_{2N+1}^{grad}(r) \neq 0$

by dimensional arguments

$$S_{2N+1}^{grad}(r) \sim (\boldsymbol{g} \cdot \boldsymbol{r}) S_{2N}^{grad}$$



scaling is anomalous

$$\zeta_2 = 0.66 \pm 0.03, \ \zeta_4 = 0.95 \pm 0.04$$

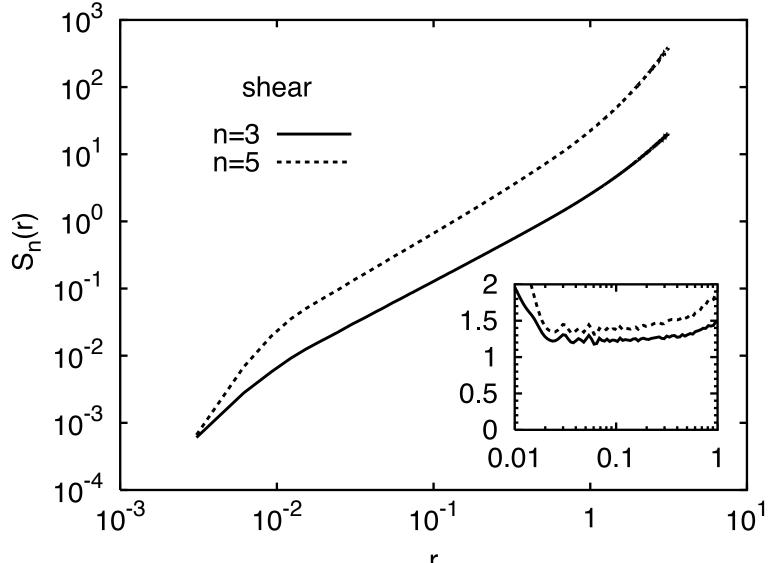
$$\zeta_6 = 1.11 \pm 0.04$$

2n/3 dim:

scaling is anomalous

$$\zeta_3 = 1.25 \pm 0.04, \ \zeta_5 = 1.38 \pm 0.07$$

dim: 5/3 7/3



For non-Kraichnan flows?

Celani & Vergassola 2001

passive scalar with a gradient

$$\Theta(\boldsymbol{x},t) = \theta(\boldsymbol{x},t) + \boldsymbol{g} \cdot \boldsymbol{x}$$

$$\partial_t \theta(\boldsymbol{r}, t) + \boldsymbol{v}(\boldsymbol{r}, t) \cdot \nabla \theta(\boldsymbol{r}, t) = \kappa \Delta \theta(\boldsymbol{r}, t) - \boldsymbol{g} \cdot \boldsymbol{v}$$

velocity NS-2D in inverse cascade

with Gaussian forcing $C_3 = 0$

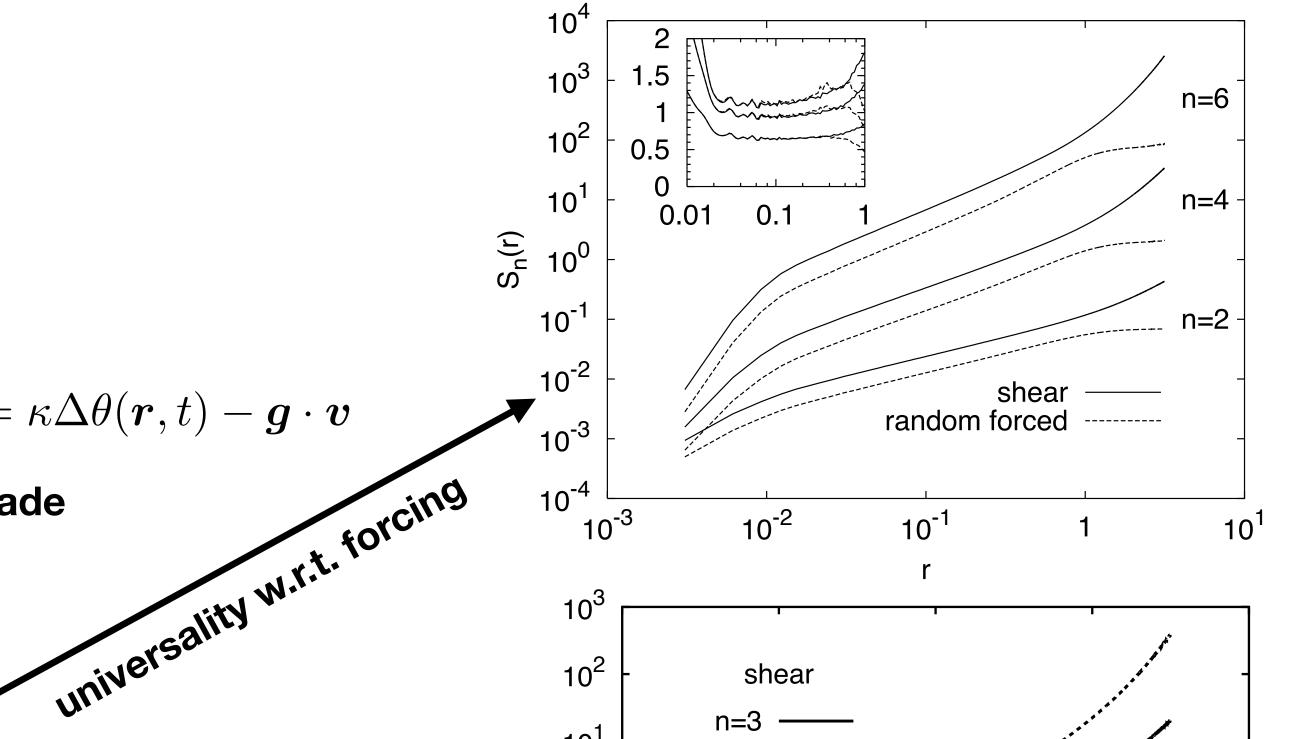
with the gradient $C_3 \neq 0$

$$S_{2N}^{gauss}(r) \sim S_{2N}^{grad}(r)$$

$$S_{2N+1}^{gauss}(r) = 0$$
 $S_{2N+1}^{grad}(r) \neq 0$

by dimensional arguments

$$S_{2N+1}^{grad}(r) \sim (\boldsymbol{g} \cdot \boldsymbol{r}) S_{2N}^{grad}$$

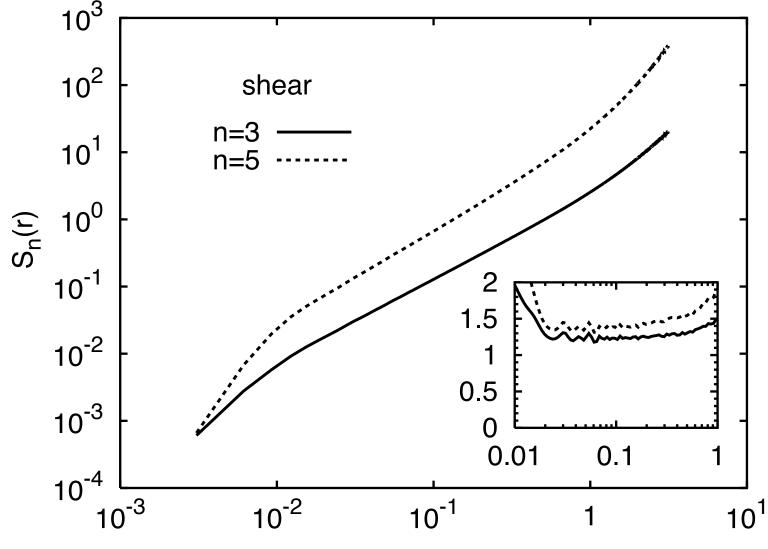


scaling is anomalous

$$\zeta_2 = 0.66 \pm 0.03, \ \zeta_4 = 0.95 \pm 0.04$$

$$\zeta_6 = 1.11 \pm 0.04$$

dim: 2n/3



scaling is anomalous

$$\zeta_3 = 1.25 \pm 0.04, \ \zeta_5 = 1.38 \pm 0.07$$

dim: 5/3 7/3

DOES IT HOLD THE ZERO MODES PICTURE HERE?

$$C_3(oldsymbol{r}_1,oldsymbol{r}_2,oldsymbol{r}_3)$$

size
$$R^2 = (r_{12}^2 + r_{23}^2 + \bar{r}_{31}^2)/3$$

shape $\chi = 1/2 \tan^{-1} \left[\frac{2\boldsymbol{\rho}_1 \cdot \boldsymbol{\rho}_2}{(\boldsymbol{\rho}_1^2 - \boldsymbol{\rho}_2^2)} \right]; \quad w = 2 \frac{|\boldsymbol{\rho}_1 \times \boldsymbol{\rho}_2|}{R}$

 ϕ orientation of the triangle

$$\rho_1 = (r_1 - r_2)/\sqrt{2}$$

$$\rho_2 = (r_1 + r_2 - 2r_3)/\sqrt{6}$$

$$C_3(\underline{r}) = R^{\zeta_3} f(\chi, w) \cos \varphi + \dots$$

$$C_3(oldsymbol{r}_1,oldsymbol{r}_2,oldsymbol{r}_3)$$

size
$$R^2 = (r_{12}^2 + r_{23}^2 + r_{31}^2)/3$$

shape $\chi = 1/2 \tan^{-1} \left[\frac{2\boldsymbol{\rho}_1 \cdot \boldsymbol{\rho}_2}{(\boldsymbol{\rho}_1^2 - \boldsymbol{\rho}_2^2)} \right]; \quad w = 2 \frac{|\boldsymbol{\rho}_1 \times \boldsymbol{\rho}_2|}{R}$

 ϕ orientation of the triangle

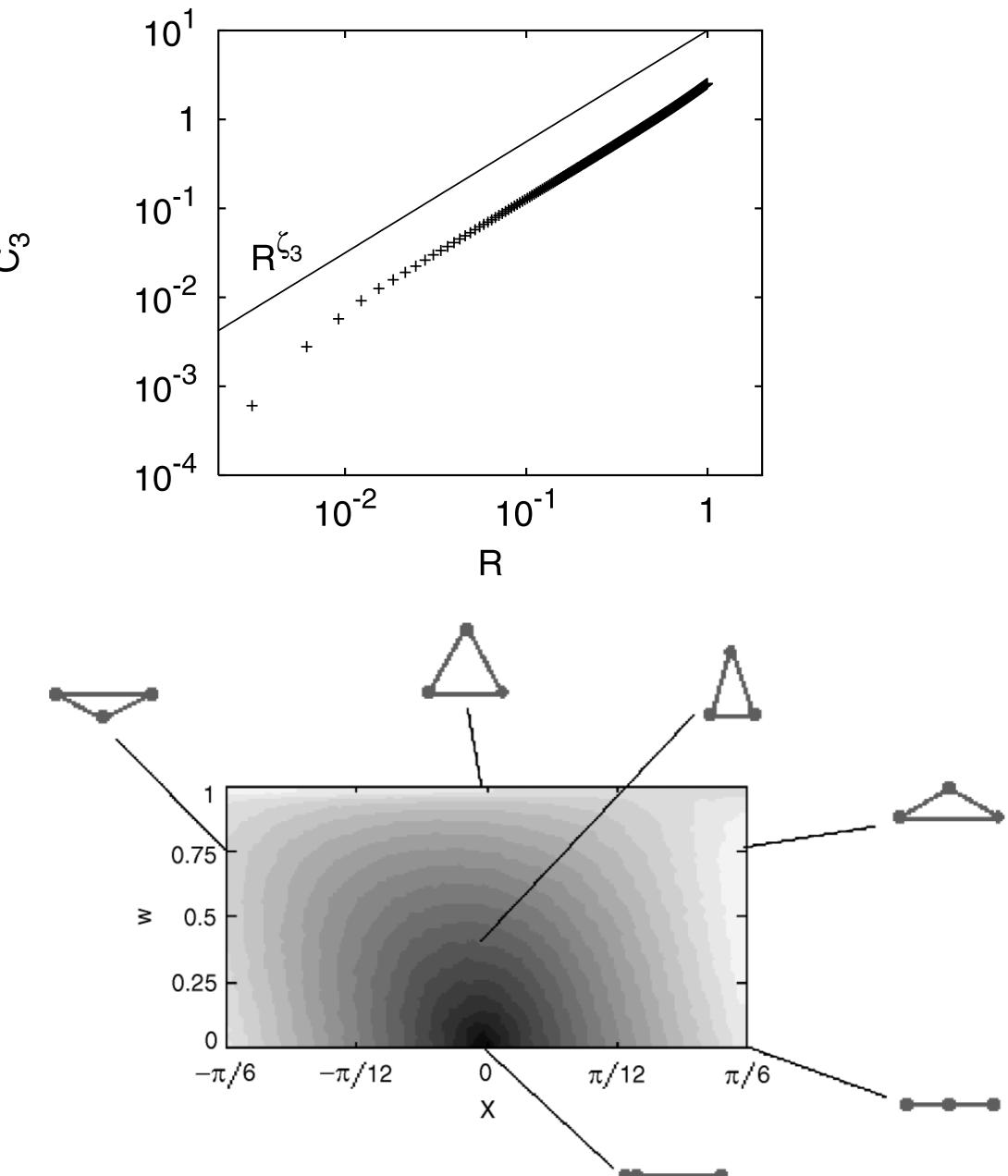
$$\rho_1 = (r_1 - r_2)/\sqrt{2}$$

$$\rho_2 = (r_1 + r_2 - 2r_3)/\sqrt{6}$$

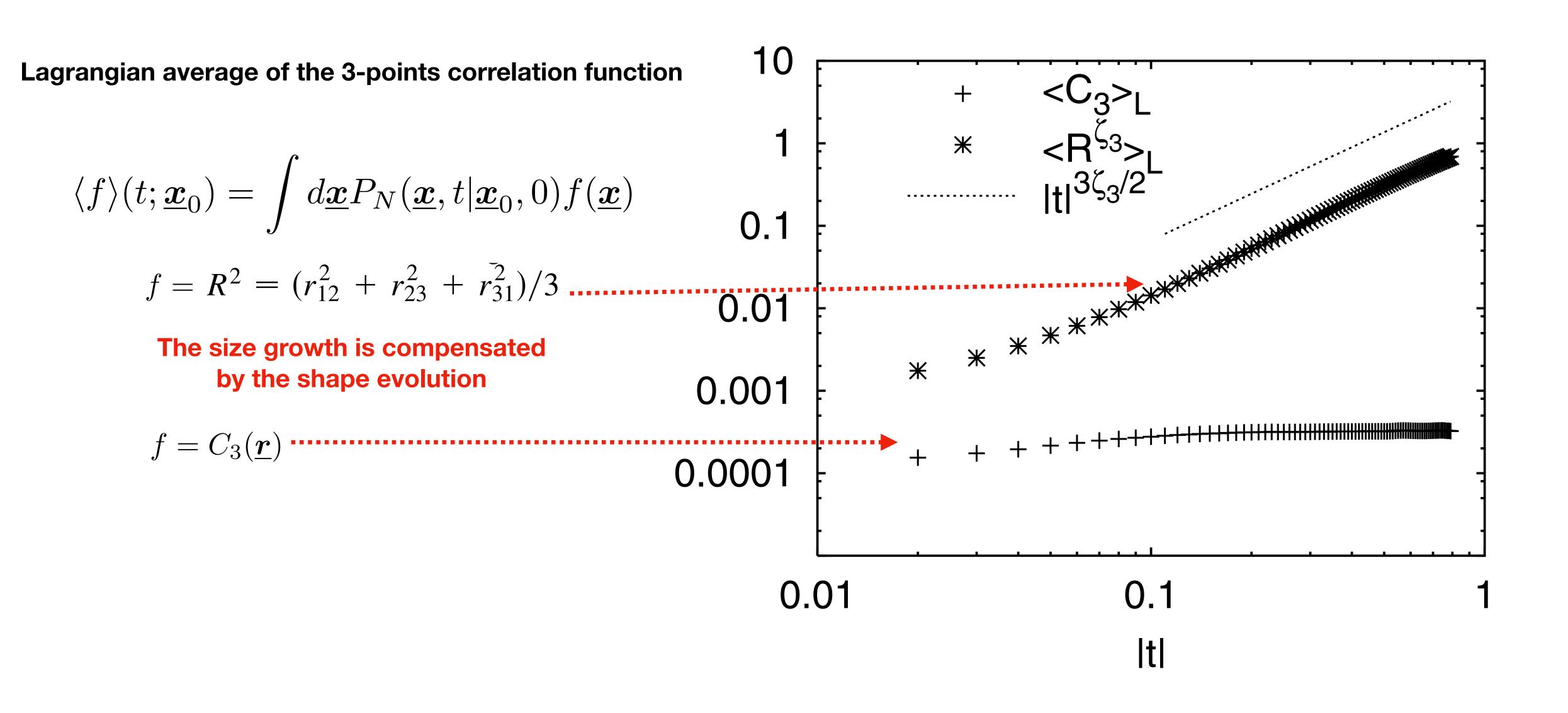
$$C_3(\underline{r}) = R^{\zeta_3} f(\chi, w) \cos \varphi + \dots$$

$$1.25 = \zeta_3 < \zeta_3^{dim} = 5/3$$

$$C_3(\underline{r}) = Z_3(\underline{r}) + subdominant$$



YES: 3-points correlation is statistically preserved



A side observation: saturation of intermittency

$$S_n(r) = \langle (\delta_r c)^n \rangle$$

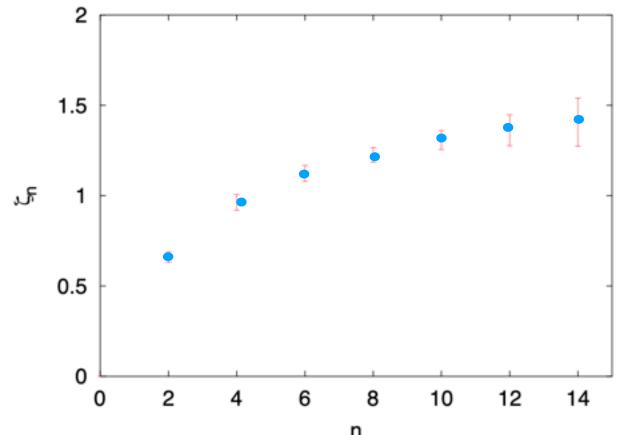
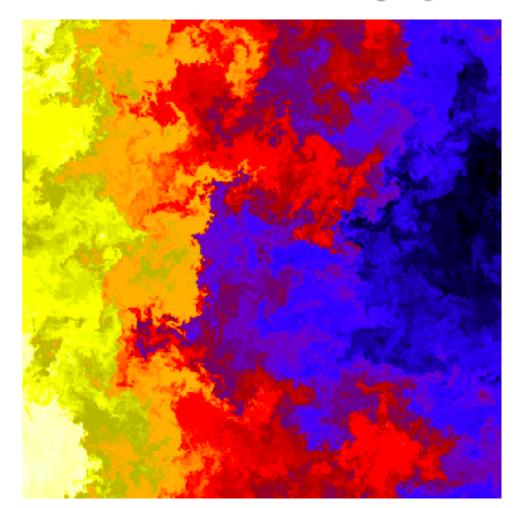


FIG. 9. Measured scaling exponent ζ_n for the Navier–Stokes advection. Error bars are estimated by the rms fluctuations of local scaling exponents.



Celani & Vergassola, Phys. Rev. Lett. 86, 424 (2001)

The cliffs observed in scalar fields are strikingly suggestive of quasi-discontinuities. When smaller and smaller molecular diffusivities are considered, the minimal width of the fronts shrinks with the dissipation scale, with their maximum amplitude remaining comparable to the scalar rms value. Simple phenomenology suggests that the presence of such structures, corresponding to a local Hölder exponent equal to zero, might induce a vanishing slope in the structure function scaling exponent curve. The fronts being the strongest possible events, this behavior should take place for large enough orders, whence the possible saturation $\zeta_n \to {\rm const}$ for high n's.

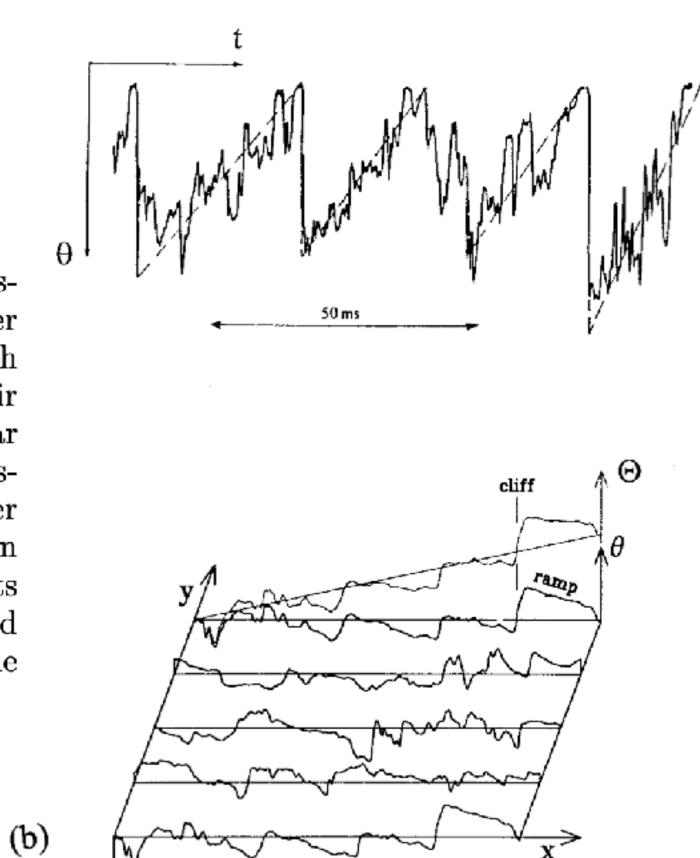
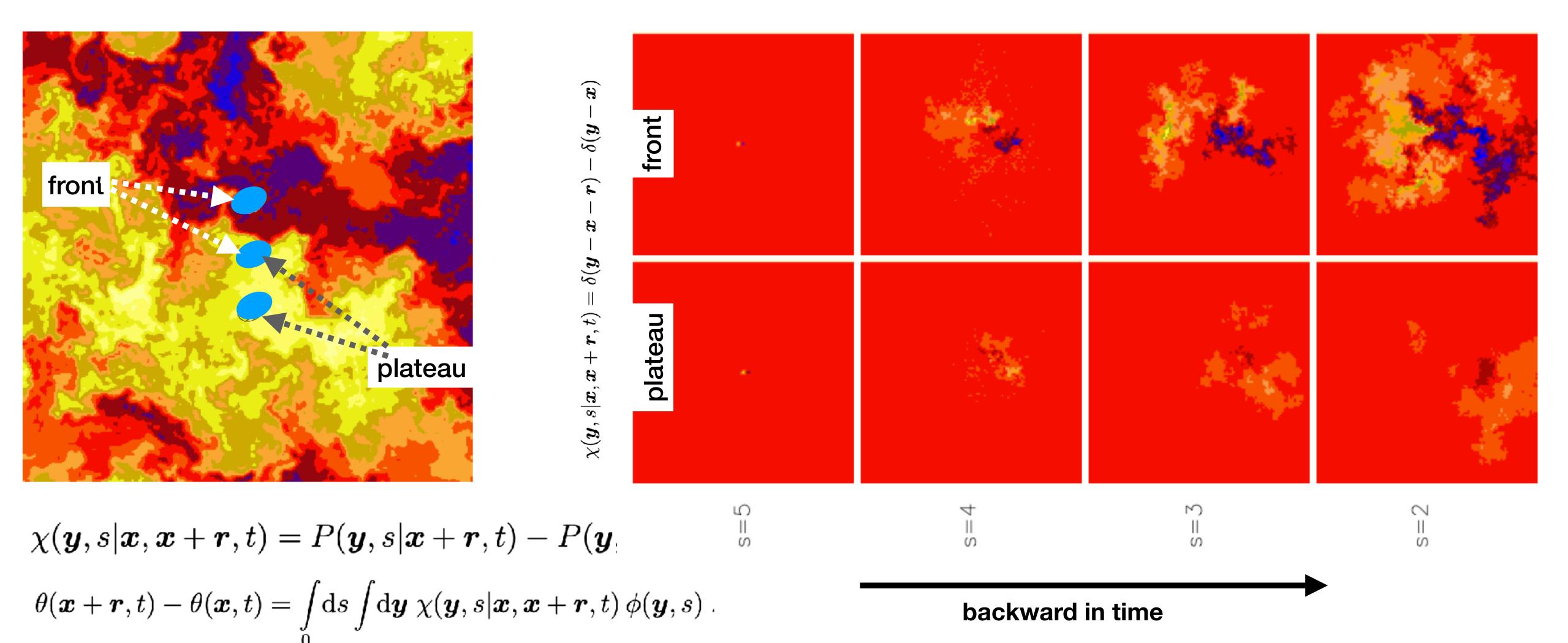


Figure 5 (a) A time series of temperature in a heated jet showing the ramp-cliff structure, from Sreenivasan et. al (1979). (b) Temperature spatial variation from numerical simulations of Holzer & Siggia (1994) with a mean temperature gradient. The full scalar is the top trace. The other traces are of the fluctuating component only.

Warhaft, Ann. Rev. Fluid Mech. 32, 203 (2000)

Saturation of intermittency: Lagrangian origin



 $\chi(\boldsymbol{y}, s | \boldsymbol{x}, \boldsymbol{x} + \boldsymbol{r}, t) = \delta(\boldsymbol{y} - \boldsymbol{x} - \boldsymbol{r}) - \delta(\boldsymbol{y} - \boldsymbol{x})$

A. Celani, MC, A. Noullez Physica D 195, 283 (2004)

Remarks

At least in Kraichnan flows (and some evidence in realistic flows) we can say that the mechanism for anomalous scaling in passive scalar turbulence is the dominance of zero modes

Zero modes admit an interesting (and testable) physical interpretation: they are functions statistically preserved over the Lagrangian paths. This conservation comes from a compensation of the growth in scale by the geometry (shape)

Remarks

At least in Kraichnan flows (and some evidence in realistic flows) we can say that the mechanism for anomalous scaling in passive scalar turbulence is the dominance of zero modes

Zero modes admit an interesting (and testable) physical interpretation: they are functions statistically preserved over the Lagrangian paths. This conservation comes from a compensation

of the growth in scale by the geometry (shape)

limit of vanishing diffusion. The anomalies associated with statistically conserved quantities are qualitatively different from those produced by dynamically conserved quantities. For example, dissipation is a singular perturbation that breaks the conservation of dynamical integrals of motion and imposes a flux-constancy condition that is similar to quantum anomalies.4 The flux constancy, in turn, is related to cascades of conserved quantities in the inertial range. Zero modes, in contrast, have no associated cascades, nor is their conservation broken by dissipation. Anomalous scaling of zero modes is due to correlations between different fluid trajectories. As different as they are, though, the two types of anomalies are intimately related: Flux constancy imposes certain scaling properties on the velocity field that generally lead to super-diffusion and to anomalous scaling of zero modes.

Falkovich & Sreenivasan. "Lessons from hydrodynamic turbulence." *Physics Today* 59.4 (2006): 43-49.

Remarks

At least in Kraichnan flows (and some evidence in realistic flows) we can say that the mechanism for anomalous scaling in passive scalar turbulence is the dominance of zero modes

Zero modes admit an interesting (and testable) physical interpretation: they are functions statistically preserved over the Lagrangian paths. This conservation comes from a compensation

of the growth in scale by the geometry (shape)

Anomalous scaling, for the velocity field (but it holds also for passive fields), is typically rationalized in terms of the multifractal model

The connection (if any) between these two views is an open question

Hidden symmetry (Talk by Chiara Calscibetta) would suggest anomalous scaling to originate from a multiplicative process ->multifractal

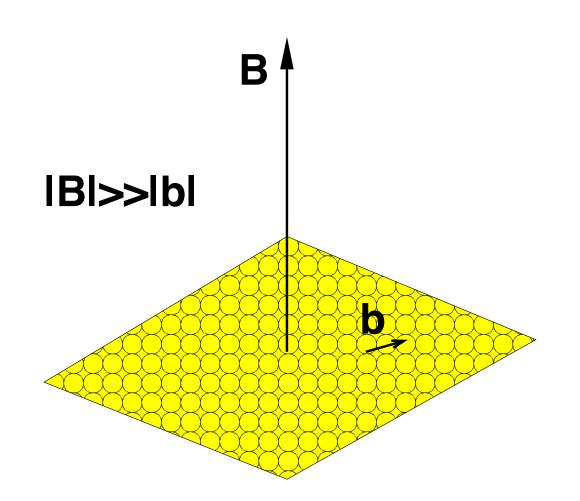
What is the connection with zero modes

limit of vanishing diffusion. The anomalies associated with statistically conserved quantities are qualitatively different from those produced by dynamically conserved quantities. For example, dissipation is a singular perturbation that breaks the conservation of dynamical integrals of motion and imposes a flux-constancy condition that is similar to quantum anomalies.4 The flux constancy, in turn, is related to cascades of conserved quantities in the inertial range. Zero modes, in contrast, have no associated cascades, nor is their conservation broken by dissipation. Anomalous scaling of zero modes is due to correlations between different fluid trajectories. As different as they are, though, the two types of anomalies are intimately related: Flux constancy imposes certain scaling properties on the velocity field that generally lead to super-diffusion and to anomalous scaling of zero modes.

Falkovich & Sreenivasan. "Lessons from hydrodynamic turbulence." *Physics Today* 59.4 (2006): 43-49.

An example of active 2D MHD

$$\partial_t a + m{v} \cdot m{\nabla} a = \kappa \Delta a + F_a$$
 magnetic potential $\partial_t m{v} + m{v} \cdot m{\nabla} m{v} = -m{\nabla} p +
u \Delta m{v} - m{\Delta} a m{\nabla} a$ $\partial_t c + m{v} \cdot m{\nabla} c = \kappa \Delta c + F_c$ passive field



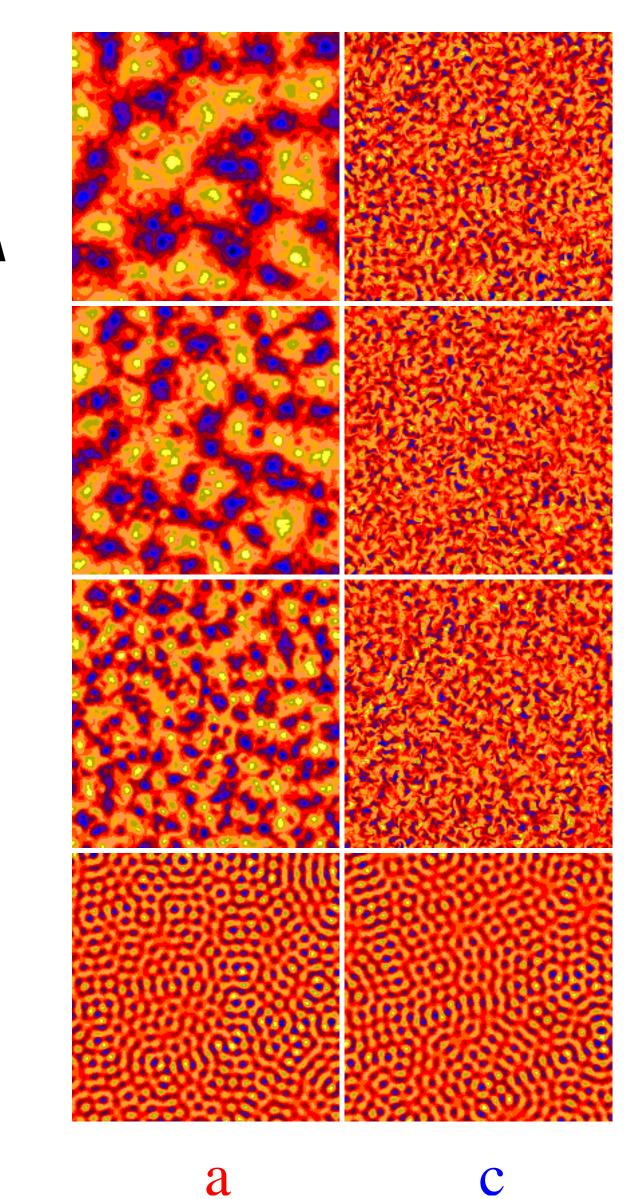
$$m{b}=m{
abla}^\perp a=(-\partial_y a,\partial_x a)$$
 Magnetic Field $(m{
abla} imes m{b}) imes m{b}=-\Delta am{
abla}a$ Lorentz Force

2d-mhd is obtained from 3d-mhd when the vertical magnetic field is much more intense that that on the transversal plane

We choose to force passive and active scalars in the same way

 F_a & F_c are different realizations of the same random process that is δ -correlated in time and with support at scale $L_f \sim 1/k_f$

2D MHD: phenomenology



$$egin{aligned} \partial_t a + oldsymbol{v} \cdot oldsymbol{
abla} a = \kappa \Delta a + F_a & \textit{magnetic potential} \ \partial_t oldsymbol{v} + oldsymbol{v} \cdot oldsymbol{
abla} v = - oldsymbol{
abla} p + \nu \Delta oldsymbol{v} - \Delta a oldsymbol{
abla} a \ \partial_t c + oldsymbol{v} \cdot oldsymbol{
abla} c = \kappa \Delta c + F_c & \textit{passive field} \end{aligned}$$

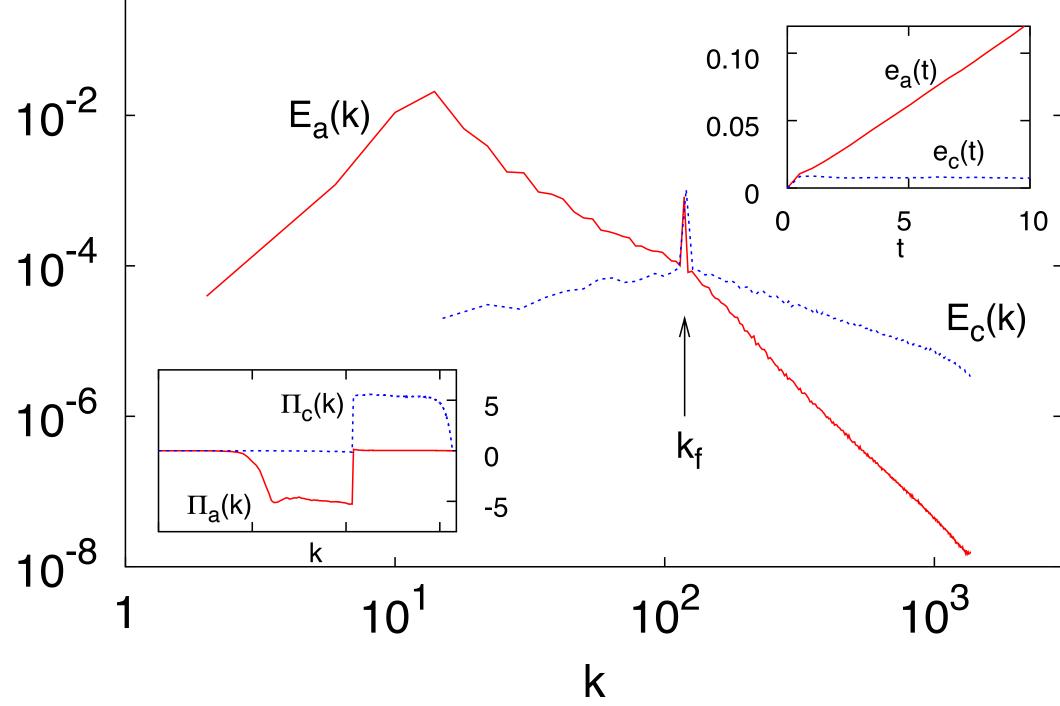
Inverse cascade: no dissipative anomaly

$$\epsilon_a = \lim_{\kappa \to 0} \kappa \langle |\nabla a|^2 \rangle = 0$$

 $e_a(t) = \frac{1}{2} \int a^2(\mathbf{x}, t) d\mathbf{x} \propto t$

Direct cascade: dissipative anomaly

$$\epsilon_c = \lim_{\kappa \to 0} \kappa \langle |\nabla c|^2 \rangle \approx \text{input}$$
 $e_c(t) = \frac{1}{2} \int c^2(\mathbf{x}, t) d\mathbf{x} \approx const$



As typical in inverse cascades the statistics of a (but also of v) is Gaussian and not intermittent D. Biskamp and U. Bremer, Phys. Rev. Lett. **72**, 3819 (1994)

What is the origin of such differences? Can we understand it adopting a Lagrangian point of view?

A. Celani, M.C., A. Mazzino & M. Vergassola, PRL 89, 234502 (2002); NJP 6, 72 (2004)

2D MHD: Another look at the absence of dissipative anomaly

$$\partial_t a + \boldsymbol{v} \cdot \boldsymbol{\nabla} a = \kappa \Delta a + F_a$$

$$a(\boldsymbol{x}, t) = \left\langle \int_0^t ds \, F_a(\boldsymbol{X}(s), s) \right\rangle_X = \int_0^t ds \, \int F_a(\boldsymbol{y}, s) \, p(\boldsymbol{y}, s | \boldsymbol{x}, t) \, d\boldsymbol{y}$$

$$a^2(\boldsymbol{x}, t) = \int_0^t ds \int_0^t ds' \int F_a(\boldsymbol{y}, s) F_a(\boldsymbol{y}', s') p(\boldsymbol{y}, s | \boldsymbol{x}, t) p(\boldsymbol{y}', s' | \boldsymbol{x}, t)$$

2D MHD: Another look at the absence of dissipative anomaly

$$\partial_t a + \boldsymbol{v} \cdot \boldsymbol{\nabla} a = \kappa \Delta a + F_a$$

$$a(\boldsymbol{x}, t) = \left\langle \int_0^t ds \, F_a(\boldsymbol{X}(s), s) \right\rangle_X = \int_0^t ds \int F_a(\boldsymbol{y}, s) \, p(\boldsymbol{y}, s | \boldsymbol{x}, t) \, d\boldsymbol{y}$$

$$a^2(\boldsymbol{x}, t) = \int_0^t ds \int_0^t ds' \int F_a(\boldsymbol{y}, s) F_a(\boldsymbol{y}', s') p(\boldsymbol{y}, s | \boldsymbol{x}, t) p(\boldsymbol{y}', s' | \boldsymbol{x}, t)$$

Now let's see if we can find another expression for a^2

$$\partial_t a^2 + \boldsymbol{v} \cdot \nabla a^2 = \kappa \Delta a^2 + 2aF_a - 2\epsilon_a \qquad \boldsymbol{\epsilon_a} \to 0 \qquad \begin{aligned} \Delta a^2 &= 2a\Delta a - 2\nabla a \cdot \nabla a \\ \boldsymbol{\epsilon_a} &= \kappa \nabla a \cdot \nabla a \end{aligned}$$

$$\partial_t a + \boldsymbol{v} \cdot \boldsymbol{\nabla} a = \kappa \Delta a + F_a$$

$$a(\boldsymbol{x}, t) = \left\langle \int_0^t ds \, F_a(\boldsymbol{X}(s), s) \right\rangle_X = \int_0^t ds \int F_a(\boldsymbol{y}, s) \, p(\boldsymbol{y}, s | \boldsymbol{x}, t) \, d\boldsymbol{y}$$

$$a^2(\boldsymbol{x}, t) = \int_0^t ds \int_0^t ds' \int F_a(\boldsymbol{y}, s) F_a(\boldsymbol{y}', s') p(\boldsymbol{y}, s | \boldsymbol{x}, t) p(\boldsymbol{y}', s' | \boldsymbol{x}, t)$$

Now let's see if we can find another expression for a^2

$$\partial_t a^2 + \boldsymbol{v} \cdot \nabla a^2 = \kappa \Delta a^2 + 2aF_a - 2\epsilon_a \qquad \boldsymbol{\epsilon_a} \to 0 \qquad \begin{array}{c} \Delta a^2 = 2a\Delta a - 2\nabla a \cdot \nabla a \\ \boldsymbol{\epsilon_a} = \kappa \nabla a \cdot \nabla a \end{array}$$

$$a^{2}(\boldsymbol{x},t) = 2\int_{0}^{t} ds \int d\boldsymbol{y} p(\boldsymbol{y},s|\boldsymbol{x},t) F_{a}(\boldsymbol{y},s) \int_{0}^{s} ds' \int d\boldsymbol{y}' F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y}',s'|\boldsymbol{y},s)$$

$$\partial_t a + \boldsymbol{v} \cdot \boldsymbol{\nabla} a = \kappa \Delta a + F_a$$

$$a(\boldsymbol{x}, t) = \left\langle \int_0^t ds \, F_a(\boldsymbol{X}(s), s) \right\rangle_X = \int_0^t ds \int F_a(\boldsymbol{y}, s) \, p(\boldsymbol{y}, s | \boldsymbol{x}, t) \, d\boldsymbol{y}$$

$$a^2(\boldsymbol{x}, t) = \int_0^t ds \int_0^t ds' \int F_a(\boldsymbol{y}, s) F_a(\boldsymbol{y}', s') p(\boldsymbol{y}, s | \boldsymbol{x}, t) p(\boldsymbol{y}', s' | \boldsymbol{x}, t)$$

Now let's see if we can find another expression for a^2

$$\partial_t a^2 + \boldsymbol{v} \cdot \nabla a^2 = \kappa \Delta a^2 + 2aF_a - 2\epsilon_a$$
 $\epsilon_a \to 0$
 $\epsilon_a = \kappa \nabla a \cdot \nabla a$
 $\epsilon_a = \kappa \nabla a \cdot \nabla a$

$$a^{2}(\boldsymbol{x},t) = 2\int_{0}^{t} ds \int d\boldsymbol{y} p(\boldsymbol{y},s|\boldsymbol{x},t) F_{a}(\boldsymbol{y},s) \int_{0}^{s} ds' \int d\boldsymbol{y}' F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y}',s'|\boldsymbol{y},s)$$

$$\partial_t a + \boldsymbol{v} \cdot \boldsymbol{\nabla} a = \kappa \Delta a + F_a$$

$$a(\boldsymbol{x}, t) = \left\langle \int_0^t ds \, F_a(\boldsymbol{X}(s), s) \right\rangle_X = \int_0^t ds \int F_a(\boldsymbol{y}, s) \, p(\boldsymbol{y}, s | \boldsymbol{x}, t) \, d\boldsymbol{y}$$

$$a^2(\boldsymbol{x}, t) = \int_0^t ds \int_0^t ds' \int F_a(\boldsymbol{y}, s) F_a(\boldsymbol{y}', s') p(\boldsymbol{y}, s | \boldsymbol{x}, t) p(\boldsymbol{y}', s' | \boldsymbol{x}, t)$$

Now let's see if we can find another expression for a^2

$$\partial_t a^2 + \boldsymbol{v} \cdot \nabla a^2 = \kappa \Delta a^2 + 2aF_a - 2\epsilon_a \qquad \boldsymbol{\epsilon_a} \to 0 \qquad \begin{aligned} \Delta a^2 &= 2a\Delta a - 2\nabla a \cdot \nabla a \\ \boldsymbol{\epsilon_a} &= \kappa \nabla a \cdot \nabla a \end{aligned}$$

$$a^{2}(\boldsymbol{x},t) = 2\int_{0}^{t} ds \int d\boldsymbol{y} p(\boldsymbol{y},s|\boldsymbol{x},t) F_{a}(\boldsymbol{y},s) \int_{0}^{s} ds' \int d\boldsymbol{y}' F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y}',s'|\boldsymbol{y},s)$$

$$2\int_0^t ds \int_0^s ds' \Longrightarrow \int_0^t \int_0^t ds ds' \qquad p(\mathbf{y}', s'|\mathbf{y}, s)p(\mathbf{y}, s|\mathbf{x}, t) = p(\mathbf{y}, s; \mathbf{y}', s'|\mathbf{x}, t)$$

$$a^{2}(\boldsymbol{x},t) = \iint_{0}^{t} ds ds' \iint d\boldsymbol{y} d\boldsymbol{y}' p(\boldsymbol{y},s;\boldsymbol{y}',s'|\boldsymbol{x},t) F_{a}(\boldsymbol{y},s) F_{a}(\boldsymbol{y}',s')$$

$$\partial_t a + \boldsymbol{v} \cdot \boldsymbol{\nabla} a = \kappa \Delta a + F_a$$

$$a(\boldsymbol{x}, t) = \left\langle \int_0^t ds \, F_a(\boldsymbol{X}(s), s) \right\rangle_X = \int_0^t ds \int F_a(\boldsymbol{y}, s) \, p(\boldsymbol{y}, s | \boldsymbol{x}, t) \, d\boldsymbol{y}$$

$$a^2(\boldsymbol{x}, t) = \int_0^t ds \int_0^t ds' \int F_a(\boldsymbol{y}, s) F_a(\boldsymbol{y}', s') p(\boldsymbol{y}, s | \boldsymbol{x}, t) p(\boldsymbol{y}', s' | \boldsymbol{x}, t)$$

Now let's see if we can find another expression for a^2

$$\partial_t a^2 + \boldsymbol{v} \cdot \nabla a^2 = \kappa \Delta a^2 + 2aF_a - 2\epsilon_a \qquad \boldsymbol{\epsilon_a} \to 0 \qquad \begin{aligned} \Delta a^2 &= 2a\Delta a - 2\nabla a \cdot \nabla a \\ \boldsymbol{\epsilon_a} &= \kappa \nabla a \cdot \nabla a \end{aligned}$$

$$a^{2}(\boldsymbol{x},t) = 2\int_{0}^{t} ds \int d\boldsymbol{y} p(\boldsymbol{y},s|\boldsymbol{x},t) F_{a}(\boldsymbol{y},s) \int_{0}^{s} ds' \int d\boldsymbol{y}' F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y}',s'|\boldsymbol{y},s)$$

$$2\int_0^t ds \int_0^s ds' \Longrightarrow \int_0^t \int_0^t ds ds' \qquad p(\mathbf{y}', s'|\mathbf{y}, s)p(\mathbf{y}, s|\mathbf{x}, t) = p(\mathbf{y}, s; \mathbf{y}', s'|\mathbf{x}, t)$$

$$a^{2}(\boldsymbol{x},t) = \iint_{0}^{t} ds ds' \iint d\boldsymbol{y} d\boldsymbol{y}' p(\boldsymbol{y},s;\boldsymbol{y}',s'|\boldsymbol{x},t) F_{a}(\boldsymbol{y},s) F_{a}(\boldsymbol{y}',s')$$

en passant Integrating over x and averaging over forcing we can see that $\langle a^2 \rangle \propto t$

$$\int_0^t ds \int_0^t ds' \int F_a(\boldsymbol{y}, s) F_a(\boldsymbol{y}', s') p(\boldsymbol{y}, s | \boldsymbol{x}, t) p(\boldsymbol{y}', s' | \boldsymbol{x}, t)$$

$$\parallel$$

$$\int_0^t ds \int_0^t ds' \int F_a(\boldsymbol{y}, s) F_a(\boldsymbol{y}', s') p(\boldsymbol{y}, s; y, s' | \boldsymbol{x}, t)$$

$$\left\langle \int_{0}^{t} ds F_{a}(\boldsymbol{X}(s;\boldsymbol{x},t)) \right\rangle^{2} = \int_{0}^{t} ds \int_{0}^{t} ds' \int F_{a}(\boldsymbol{y},s) F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y},s|\boldsymbol{x},t) p(\boldsymbol{y}',s'|\boldsymbol{x},t)$$

$$\left| \right|$$

$$\int_{0}^{t} ds \int_{0}^{t} ds' \int F_{a}(\boldsymbol{y},s) F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y},s;\boldsymbol{y},s'|\boldsymbol{x},t)$$

$$\left\langle \int_{0}^{t} ds F_{a}(\boldsymbol{X}(s;\boldsymbol{x},t)) \right\rangle^{2} = \int_{0}^{t} ds \int_{0}^{t} ds' \int F_{a}(\boldsymbol{y},s) F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y},s|\boldsymbol{x},t) p(\boldsymbol{y}',s'|\boldsymbol{x},t)$$

$$\left\langle \left(\int_{0}^{t} ds F_{a}(\boldsymbol{X}(s;\boldsymbol{x},t)) \right)^{2} \right\rangle = \int_{0}^{t} ds \int_{0}^{t} ds' \int F_{a}(\boldsymbol{y},s) F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y},s;\boldsymbol{y},s'|\boldsymbol{x},t)$$

$$\left\langle \int_{0}^{t} ds F_{a}(\boldsymbol{X}(s;\boldsymbol{x},t)) \right\rangle^{2} = \int_{0}^{t} ds \int_{0}^{t} ds' \int F_{a}(\boldsymbol{y},s) F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y},s|\boldsymbol{x},t) p(\boldsymbol{y}',s'|\boldsymbol{x},t)$$

$$\left\langle \left(\int_{0}^{t} ds F_{a}(\boldsymbol{X}(s;\boldsymbol{x},t))^{2} \right\rangle = \int_{0}^{t} ds \int_{0}^{t} ds' \int F_{a}(\boldsymbol{y},s) F_{a}(\boldsymbol{y}',s') p(\boldsymbol{y},s;\boldsymbol{y},s'|\boldsymbol{x},t)$$

One can generalize to

$$\left\langle \int_0^t ds F_a(\boldsymbol{X}(s;\boldsymbol{x},t)) \right\rangle^N = \left\langle \left(\int_0^t ds F_a(\boldsymbol{X}(s;\boldsymbol{x},t)) \right)^N \right\rangle$$

All paths are constrained to sum up the same forcing contribution!!!!!

2D MHD: A consequence of the absence of dissipative anomaly

$$\left\langle \int_0^t ds F_a(\boldsymbol{X}(s;\boldsymbol{x},t)) \right\rangle^N = \left\langle \left(\int_0^t ds F_a(\boldsymbol{X}(s;\boldsymbol{x},t)) \right)^N \right\rangle$$

How can all paths sum up the same forcing contribution?

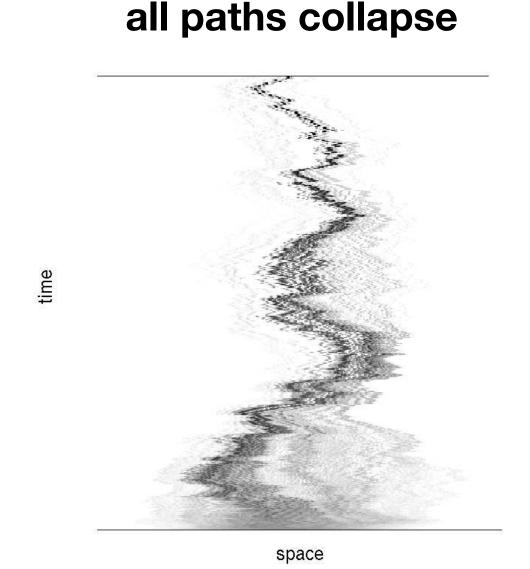
2D MHD: A consequence of the absence of dissipative anomaly

$$\epsilon_a \rightarrow 0$$

$$\left\langle \int_0^t ds F_a(\boldsymbol{X}(s;\boldsymbol{x},t)) \right\rangle^N = \left\langle \left(\int_0^t ds F_a(\boldsymbol{X}(s;\boldsymbol{x},t)) \right)^N \right\rangle$$

How can all paths sum up the same forcing contribution?

In passive scalars this happens in compressible flows where for $\kappa \to 0$



In our case velocity is incompressible and the scalar field is active so the above relation must be the result of the collective organization of many paths and non-trivial correlations between the forcing and the paths

Gawedzki Vergassola, PhysicaD 138, 63 (2000)

2D MHD: Lagrangian view

$$a(\mathbf{x},t) = \int_0^t ds \int p(\mathbf{y}, s | \mathbf{x}, t) F_a(\mathbf{y}, s) d\mathbf{y}$$

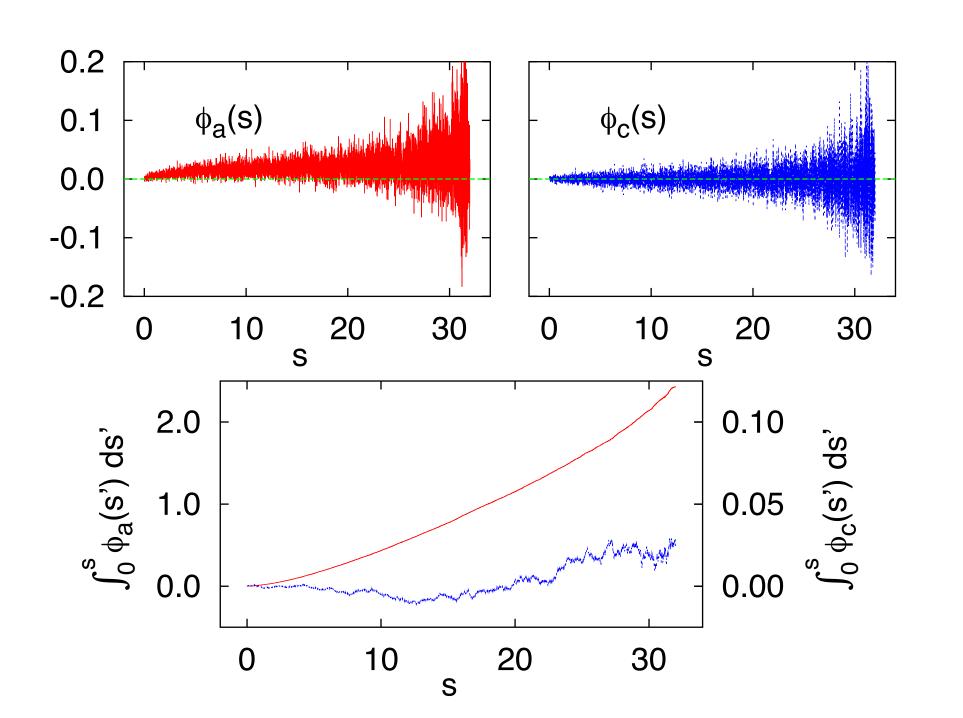
$$c(\mathbf{x},t) = \int_0^t ds \int p(\mathbf{y}, s | \mathbf{x}, t) F_c(\mathbf{y}, s) d\mathbf{y}$$

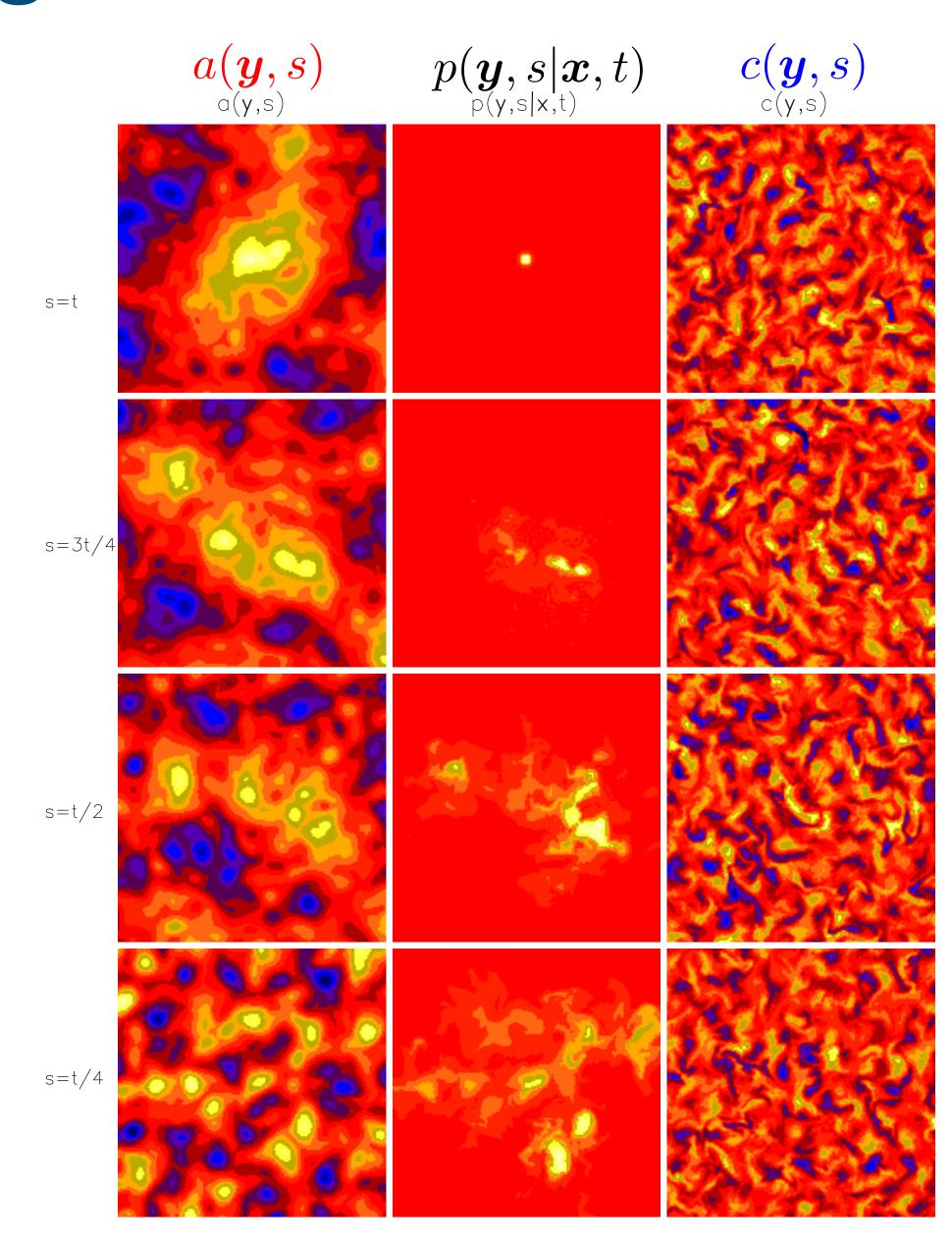
2D MHD: Lagrangian view

$$a(\mathbf{x},t) = \int_0^t ds \int p(\mathbf{y}, s | \mathbf{x}, t) F_a(\mathbf{y}, s) d\mathbf{y}$$

$$c(\mathbf{x},t) = \int_0^t ds \int p(\mathbf{y}, s | \mathbf{x}, t) F_c(\mathbf{y}, s) d\mathbf{y}$$

Correlations between F_a & Lagrangian paths





Some general considerations on active scalars

Fields that act on the velocity through local forces

$$\partial_t a + \boldsymbol{v} \cdot \boldsymbol{\nabla} a = \kappa \Delta a + F_a$$

$$\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} = -\boldsymbol{\nabla} p + \nu \Delta \boldsymbol{v} + \boldsymbol{\mathcal{F}}(a, \boldsymbol{\nabla} a, \ldots)$$

e.g. Thermal Convection: a (temperature) $\mathcal{F} = -\beta ga$ (buoyancy) or MHD

Fields functionally linked to the velocity field

$$\partial_t a + \boldsymbol{v} \cdot \boldsymbol{\nabla} a = \kappa \Delta a + F_a$$

 $v_i(\boldsymbol{x}, t) = \int d\boldsymbol{y} \, \Gamma_i[\boldsymbol{x}, \boldsymbol{y}] \, a(\boldsymbol{y}, t)$

e.g. 2d-NS
$$a = \nabla \times \boldsymbol{v}$$
 (vorticity) $\Gamma_i[\boldsymbol{x}, \boldsymbol{y}] = -(2\pi)^{-1} \epsilon_{ij} \partial_j \log |\boldsymbol{x} - \boldsymbol{y}|$ or Surface Quasi-Geostrophic equation $v_i(\boldsymbol{x}, t) = \int d\boldsymbol{y} \, a(\boldsymbol{y}, t) \, \epsilon_{ij} \partial_{x_i} |\boldsymbol{x} - \boldsymbol{y}|^{-1}$

Due to the "activity" i.e. the dependence of v on a the problem is non linear and one cannot invoke the zero modes picture to justify universality of the statistics in other terms both the statistical properties of velocity and scalar fields are no more guarantee to be universal with respect to the forcing

Bibliography

Reviews on passive scalars

Theo:

B. I. Shraiman, E. D. & Siggia, (2000). Scalar turbulence. nature, 405(6787), 639-646.

G Falkovich, K. Gawędzki, and MVergassola. "Particles and fields in fluid turbulence." Reviews of modern Physics 73, no. 4 (2001): 913 **Exp:**

Warhaft, Z. (2000). Passive scalars in turbulent flows. *Annual review of fluid mechanics*, 32(1), 203-240.

Kraichnan model

Where all started

Kraichnan, R. H. (1968). Small-scale structure of a scalar field convected by turbulence. *The Physics of Fluids*, 11(5), 945-953.

Kraichnan, Robert H. "Anomalous scaling of a randomly advected passive scalar." *Physical review letters* 72.7 (1994): 1016.

Three independent solutions

Gawędzki, Krzysztof, and Antti Kupiainen. "Anomalous scaling of the passive scalar." Physical review letters 75, no. 21 (1995): 3834.

Chertkov, Misha, Gregory Falkovich, Igor Kolokolov, and Vladmir Lebedev. "Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar." *Physical Review E* 52, no. 5 (1995): 4924.

Shraiman, BI., and ED. Siggia. "Anomalous scaling of a passive scalar in turbulent flow" Comptes Rendus de l'Académie des Sciences. Sér II 321, 279 (1995)

Further technical but crucial results

Bernard, Denis, Krzysztof Gawedzki, and Antti Kupiainen. "Anomalous scaling in the N-point functions of a passive scalar." *Physical Review E* 54, no. 3 (1996): 2564.

Bernard, Denis, Krzysztof Gawedzki, and Antti Kupiainen. "Slow modes in passive advection." *Journal of Statistical Physics* 90, no. 3 (1998): 519-569.

Frisch, U., A. Mazzino, and M. Vergassola. "Intermittency in passive scalar advection." *Physical review letters* 80, no. 25 (1998): 5532.

Gat, Omri, and Reuven Zeitak. "Multiscaling in passive scalar advection as stochastic shape dynamics." *Physical Review E* 57, no. 5 (1998): 5511. Gawędzki, Krzysztof, and Massimo Vergassola. "Phase transition in the passive scalar advection." *Physica D: Nonlinear Phenomena* 138, no. 1-2 (2000): 63-90.

Bibliography

DNS

Passive scalars

Celani, A., and M. Vergassola. "Statistical geometry in scalar turbulence." Physical review letters 86, no. 3 (2001): 424.

Celani, A., Lanotte, A., Mazzino, A. and Vergassola, M., 2000. Universality and saturation of intermittency in passive scalar turbulence. *Physical review letters*, 84(11), p.2385.

Celani, A., Lanotte, A., Mazzino, A. and Vergassola, M., 2001. Fronts in passive scalar turbulence. *Physics of Fluids*, 13(6), pp.1768-1783 **Calascibetta, Chiara, Luca Biferale, Fabio Bonaccorso, Massimo Cencini, and Alexei A. Mailybaev. "Hidden symmetry in passive scalar advected by two-dimensional Navier-Stokes turbulence." *Physical Review Fluids* 10, no. 8 (2025): 084605.

Active scalars

Celani, Antonio, Massimo Cencini, Andrea Mazzino, and Massimo Vergassola. "Active versus passive scalar turbulence." *Physical review letters* 89, no. 23 (2002): 234502.

Celani, Antonio, Massimo Cencini, Andrea Mazzino, and Massimo Vergassola. "Active and passive fields face to face." New Journal of Physics 6, no. 1 (2004): 72.

SHELL MODELS

Wirth, Achim, and L. Biferale. "Anomalous scaling in random shell models for passive scalars." *Physical Review E* 54, no. 5 (1996): 4982. Benzi, R., Biferale, L., & Wirth, A. (1997). Analytic calculation of anomalous scaling in random shell models for a passive scalar. *Physical review letters*,

78(26), 4926.

**Thalabard, S., & Mailybaev, A. A. (2024). From zero-mode intermittency to hidden symmetry in random scalar advection. *Journal of Statistical Physics*, 191(10), 131.

** use the idea of hidden symmetry introduced in

Mailybaev, Alexei A. "Hidden scale invariance of intermittent turbulence in a shell model." Physical Review Fluids 6, no. 1 (2021): L012601.