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A multiscale problem

... with strongly non Gaussian statistics 

Turbulent flows
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Lagrangian approach:

Lagrangian pair trajectories separation:
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" small scales (Lagrangian Chaos) 

(%) intermediate scales (Richardson’s dispersion)

($) large scales (effective diffusion)
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Ẋt = v(Xt, t)
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Outline  -topic 2-

• Brief recall of single particle dispersion in turbulence


• Relative dispersion of two particles: Chaos, Richardson dispersion + 
intermittency, explosive separation  


• Some ideas on multiparticle dispersion, shape and size evolution, zero 
modes



Single particle: absolute dispersion
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Ẋ = u(X, t) +
p
2D0⌘(t) We consider small particles with same density as the fluid: no inertia 

A simple limiting case

Gaussian noise
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h⌘i(t)i = 0

no flow (Brownian diffusion)
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2i = 2D0

Z t

0
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Z t

0
ds0 h⌘i(s)⌘i(s0)i = 2D0t

<latexit sha1_base64="b9J6FlTLfU/CpuJ6mWruFlu6JZo="></latexit>

Xi(t)�Xi(0) =
p

2D0

Z t

0
ds ⌘i(s)

<latexit sha1_base64="NRB+wG/YQYfw9Wl9HynPz1Z2KLM="></latexit>

�(s� s0)

=



Another limit: no noise (only advection)
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Ẋ = V (t) = u(X(t), t)
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Single particle: absolute dispersion
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hVi(s)Vi(s
0)i = Cii(s, s

0) = Cii(s� s0)

by stationarity

Lagrangian Correlation function
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Lagrangian correlation time
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C(0) = hV 2i
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DE = C(0)⌧c

Eddy diffusivity



Single particle: superdiffusion
What does happen if the correlation function is not integrable? i.e. if the correlation time is not finite
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⌧c =
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0 d⌧Cii(⌧)

Cii(0)
= 1

Superdiffusion   (Anomalous diffusion)
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h[Xi(t)�Xi(0)]
2i ⇠ t↵ ↵ > 1

In turbulence the correlation time is finite and thus 

we do not expect anomalous diffusion for the single particle


But the long time diffusive behavior will be much faster than in the absence of flow

due to eddy diffusivity  DE ∼ τcU2



Relative dispersion
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Ẋ1 = u(X1, t)

Ẋ2 = u(X2, t)
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R = X2 �X1
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Ṙ = u(X1 +R, t)� u(X1, t) = �Ru

Relative dispersion depends on the two-point properties of the velocity field

Roma, Mag-Giu 2009Roma, Mag-Giu 2009Massimo CenciniMassimo Cencini   Trasporto di particelle traccianti ed inerziali in flussi laminari e turbolenti

Dispersione relativaDispersione relativa

Moto relativo di due traccianti si eliminano gli effetti di campo medio e/o Moto relativo di due traccianti si eliminano gli effetti di campo medio e/o 
di sweepingdi sweeping. Possiamo comprendere . Possiamo comprendere usando sistemi dinamici e K41usando sistemi dinamici e K41  

rrηη LLTempi caratteristiciTempi caratteristici

Differenze di velocitàDifferenze di velocità
Different behaviors depending on the initial separation
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R = |R|

I 

II 

III

The third regime is like Brownian diffusion with  an enhanced diffusion coefficient 
what about the other two regimes?
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R ⌧ ⌘ ! �Ru / R

⌘ ⌧ R ⌧ L ! �Ru / R1/3

R � L ! �Lu (Gaussian uncorrelated variables)



Relative dispersion: small separation
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Ṙ = AR
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r · u = 0 7! Tr[A] = 0

In 3D even for non turbulent flows (i.e. laminar flows)  particles separate exponentially  due to chaos!
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�1 > 0 the maximal Lyapunov Exponent
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R(t) = W(0, t)R(0)
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W(0, t) = T exp

Z t

0
A(s)ds

�

positive and symmetric finite time Lyapunov exponents

Characteristic Lyapunov exponentsCharacteristic Lyapunov exponents

Positive & symmetricPositive & symmetric

Finite time Lyapunov exponentsFinite time Lyapunov exponents

Oseledec-->Oseledec--> if ergodicif ergodic

Lyapunov exponentsLyapunov exponents

What is their physical meaning?What is their physical meaning?

Oseledec Theorem

if ergodic

Characteristic Lyapunov exponentsCharacteristic Lyapunov exponents

Positive & symmetricPositive & symmetric

Finite time Lyapunov exponentsFinite time Lyapunov exponents

Oseledec-->Oseledec--> if ergodicif ergodic

Lyapunov exponentsLyapunov exponents

What is their physical meaning?What is their physical meaning?



Relative dispersion: small separationCharacteristic Lyapunov exponentsCharacteristic Lyapunov exponents
λλ1              1              => => growth rate of infinitesimal segmentsgrowth rate of infinitesimal segments
λλ11++λλ22     =>      => growth rate of infinitesimal surfacesgrowth rate of infinitesimal surfaces
λλ11++λλ22++λλ3 3 => => growth rate of infinitesimal volumesgrowth rate of infinitesimal volumes
            ::                        ::                                      ::
λλ11++λλ22++λλ33++……++λλd d => => growth rate of infinitesimal phase-space volumesgrowth rate of infinitesimal phase-space volumes

Chaotic systems have at least Chaotic systems have at least λλ11>0>0
Conservative systems Conservative systems λλ11++λλ22++λλ33++……++λλdd=0=0  
Dissipative systems    Dissipative systems    λλ11++λλ22++λλ33++……++λλdd<0<0

JJ J+1J+1
DDLL

nn11

≈ ≈

22

Lyapunov dimensionLyapunov dimension
(Kaplan & Yorke 1979)(Kaplan & Yorke 1979)

One typically hasOne typically has D(1) D(1)≤≤DDLL
The equality holding for specific systemsThe equality holding for specific systems
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Ṙ = AR
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Aij =
@ui

@xj
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r · u = 0 7! Tr[A] = 0
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�1 + �2 + �3 = 0

incompressibility conservation of volumes

Lyapunov dimensionLyapunov dimension

If we want to cover the ellipse with boxes of sizeIf we want to cover the ellipse with boxes of size
Number of boxesNumber of boxes

ExampleExample
λλ11>0 >0 λλ22<0<0

|| ||

Lyapunov dimensionLyapunov dimension

If we want to cover the ellipse with boxes of sizeIf we want to cover the ellipse with boxes of size
Number of boxesNumber of boxes

ExampleExample
λλ11>0 >0 λλ22<0<0

|| ||

Lyapunov dimensionLyapunov dimension

If we want to cover the ellipse with boxes of sizeIf we want to cover the ellipse with boxes of size
Number of boxesNumber of boxes

ExampleExample
λλ11>0 >0 λλ22<0<0

|| ||

Lyapunov dimensionLyapunov dimension

If we want to cover the ellipse with boxes of sizeIf we want to cover the ellipse with boxes of size
Number of boxesNumber of boxes

ExampleExample
λλ11>0 >0 λλ22<0<0

|| ||

Chaotic stretching Nonlinear effects  lead to folding 

Stretching and folding are at the base of mixing  
in laminar flows



Relative dispersion: small separation
<latexit sha1_base64="oXCeGxFU0KQnA5gqpKZQsR6heAg="></latexit>

�1(t) =
1

t
log

✓
R(t)

R(0)

◆

<latexit sha1_base64="1il1cTd4AZrld8cVlNBfz8qumbw="></latexit>

lim
t!1

lim
R(0)!0

�1(t) = �1

Finite Time Lyapunov Exponent

<latexit sha1_base64="+BkYicSVyaE5NxZk7//Ak4HeU6Y="></latexit>

Pt(�) ⇠ e�S(�)t

<latexit sha1_base64="y7P2RVg5e7+Ocw3hCxMN2N/CjqE="></latexit>

S(�) > 0 if � 6= �1 & S(�1) = 0

Large deviation theory

June 30, 2009 11:56 World Scientific Book - 9.75in x 6.5in ChaosSimpleModels

122 Chaos: From Simple Models to Complex Systems

-10

-5

 0

 5

 10

 15

 20

 25

-20 -15 -10 -5  0  5  10  15  20

L(
q)

q

(a)

q λ1

q γmax

q γmin

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

S
(γ

)

γ

(b)

λ1 γmaxγmin

Fig. 5.17 (a) L(q) vs q as from Eq. (5.34) for p = 0.35. The asymptotic q → ±∞ behaviors are
shown as dotted lines while in solid lines we depict the behavior close to the origin. (b) The rate
function S(γ) vs γ corresponding to (a). Critical points are indicated by arrows. The parabolic
approximation of S(γ) corresponding to(5.35) is also shown, see text for details.

where we used the asymptotic expression R(t) ∼ exp(γt). In the limit t → ∞, the
asymptotic value of the integral (5.33) is dominated by the leading contribution
(saddle point) coming from those γ-values which maximize the exponent, so that

L(q) = max
γ

{qγ − S(γ)} .

As for D(q) and f(α), this expression establishes that L(q) and S(γ) are linked by
a Legendre transformation.

As an example we can reconsider the skew tent map (5.25), for which an easy
computation shows that

〈Rq(t, τ)〉τ =
[
p

(
1
p

)q

+ (1 − p)
(

1
1 − p

)q]t

(5.34)

and thus

L(q) = ln[p1−q + (1 − p)1−q] ,

whose behavior is illustrated in Fig. 5.17a. Note that asymptotically, for q → ±∞,
L(q) ∼ qγmax,min, while, in q = 0, the tangent to L(q) has slope λ1 = L′(q) =
−p ln p − (1 − p) ln(1 − p). Through the inverse Legendre transformation we can
obtain the Cramer function S(γ) associated to L(q) (shown in Fig. 5.17b). Here, for
brevity, we omit the algebra which is a straightforward repetition of that discussed
in Sec. 5.2.3.

In general, the distribution Pt(γ) is not known a priori and should be sampled
via numerical simulations. However, its shape can be guessed and often well approx-
imated around the peak by assuming that, due to the randomness and decorrelation
induced by the chaotic motion, γ(t) behaves as a random variable. In particular, as-
suming the validity of central limit theorem (CLT) for γ(t) [Gnedenko and Ushakov
(1997)], for large times Pt converges to the Gaussian

Pt(γ) ∼ exp
[
− t(γ − λ1)2

2σ2

]
(5.35)

For large times and close to the minimum (TLC)

Law of large numbers  (Oseledec)

J. Bec et al. Physics of Fluids 18, 091702 (2006).
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Dispersion in the inertial range: Richardson
R. Benzi and F. Toschi Physics Reports 1021 (2023) 1–106

Fig. 5. Figure from the original Richardson’s paper [8] representing the experimental results of the diffusivity D measured as a function of l, i.e. the
distance separation between two particles. Starting from these data, Richardson proposed his famous 4/3 law drawn in the figure.
Source: Reproduced from [8].

had a brilliant and deep intuition and assumed D to be a function of R. Then, he considered two particles at a distance R
and considered the probability distribution P(R, t) to find the particles at distance R at time t . Because the integral of P
over the domain should be constant and equal to 1, the equation of P should be of the form:

@t P =
1

Rd�1

@

@R


D(R)Rd�1 @

@R
P(R)

�
(28)

assuming isotropy in a d dimensional space. Eq. (28) follows by the continuity equation

@t P + r · J = 0 (29)

with the ‘‘current’’ J given by the Fickian law J = �DrP .
Next, looking at observations and available data, Richardson found that

D(R) = �R4/3 (30)

see Fig. 5. The constant � was changing only by a factor 10 instead of nine order of magnitude: clearly a big improvement.
It is possible to solve Eqs. (28)–(30) analytically. For our purpose, however, it is simple to get the basic information

by using a simple trick. Upon rescaling R ! �R and t ! �at , Eq. (28) remains invariant if a = 3/2. This implies that the
solution of Eq. (28) should be of the form P(R, t) = Z(t)P(⇠ ) with ⇠ ⌘ R/t3/2, with Z(t) a suitable normalisation factor.
Using this observation we obtain

R2(t) ⇠ t3

10
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Fenomenologia della turbolenza:Fenomenologia della turbolenza:
cascata di energiacascata di energia

L. F. RichardsonL. F. Richardson
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output output εε

trasferimento trasferimento εε

The history of relative dispersion in turbulence starts with 
Richardson (1926) predating K41
From experimental observations of the evolution of the separation  
of balloons in the atmosphere 

L.F. Richardson, Proc. Roy. Soc. A 110, 709 (1926).
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Dispersion in the inertial range: Richardson
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diffusive pair dispersion regime6,8

hl2i= g ϵ t3, ð6Þ

where g is the Richardson constant. We also make use of the fact that
there are two theoretical predictions for the probability density func-
tion (PDF) of l in the inertial range1,6,8,13. In both theories, the average

separation is equal to hli=b
ffiffiffiffiffiffiffiffi
hl2i

q
, where b =0.867 ± 0.054 is a

dimensionless constant (see Section 4.2). Combining this with Eq. (6)

we obtain d lh i
dt = 3

2 b ðgϵtÞ
1=2. Notably, Richardson’s solution is strictly

valid only for l0 = 0, and thus the variance of l in Eq. (6) is usually

replaced with the variance of (l − l0)6. Yet, since
d lh i
dt = d l#l0h i

dt , and since
the PDF of l − l0 was experimentally observed to agree with the theo-
retical expressions used here for the PDF of l6,13, our calculation applies
also for finite l0. The second factor, ∣Δv∣h i, is the first order Eulerian-
Lagrangian absolute structure function, where the relative velocities
are taken over the full distribution of particle distances which changes
with time. At t = 0, the structure function is purely Eulerian, so
according to the Kolmogorov theory24 (namely, neglecting intermit-

tency corrections), ∣Δv∣ ∣ t =0h i=
"
∣Δl0v∣

#
=C1ðϵl0Þ

1=3, where C1 is a
universal constant of turbulence. At longer times, the mixed structure
function is calculated by averaging the particles’ relative velocities
across the distribution of particle distances, l; in the inertial range we

obtain ∣Δv∣h i= c C1 ϵ
ffiffiffiffiffiffiffiffiffi"
l2
#q$ %1=3

, where c =0.918 ± 0.034 is a dimen-

sionless constant (see Section 4.3). Combining these estimations and
using Eq. (6) we obtain the following first order, mean-field
approximation, for the angle cosine in the inertial range of turbulence

αh i=a
g1=3

C1
, ð7Þ

where a $ 3b
2c = 1:42±0:10.

Equation (7) connects αh i with Richardson’s law in the inertial
range, and it has several important implications. First, our calculations
suggest that αh i in the super-diffusive regime is constant. This is in
agreement with the dimensional analysis argument presented above,

which is expected as eq. (6) can also be derived from a similar
argument4. Indeed, the valueof αh i obtainedhere does not dependon ϵ
nor on the initial conditions, so it is a universal constant of turbulence.
The value of αh i can be calculated with eq. (7) for the small initial
separations for which Richardson’s theory holds, and then, assuming
that αh i is independent on l0, the same value should hold for the entire
inertial range (this is verified in Section 2.2). Second, because of the
geometrical constraint ∣α∣≤ 1, and since all the constants in eq. (7) are
positive,weobtain a constraint for the valueof theRichardson constant

g ≤
C1

a

$ %3

: ð8Þ

Third, if one measures θ
" #

from empirical data, the value of g can
be readily calculated.

Universality of the pair dispersion angle
The angle θ can bemeasured from the trajectories of flow tracers, and
thus, its behavior can be tested using empirical data directly. To this
end, we used two independent datasets. The first is the Johns Hopkins
Turbulence Database (JHTDB), which holds turbulent flow fields taken
from a direct numerical simulation (DNS) of a forced homogeneous
isotropic turbulence at a Taylor microscale Reynolds number of
Reλ ≈ 433, with the ability to integrate Lagrangian trajectories25,26. Since
its publication, this database has become a gold standard and a
hypothesis-testing tool for turbulent flows. The second data set was
taken from 3D particle tracking measurements27,28 of quasi-
homogeneous isotropic turbulence that we conducted inside a stir-
red water tank at ETH Zürich (Fig. 2a and Supplementary Video 2, the
data is available in ref. 29). The flow had secondary circulation with an
amplitude of about 68% of the root mean squared turbulent fluctua-
tions. The turbulence integral length scale, L = 20.5mm,was calculated
by fitting an exponential function to the longitudinal velocity auto-
correlation function (Fig. 2g), where a Kolmogorov scaling range was
observed between approximately 1 and 5 mm for the Eulerian second
order structure function (Fig. 2f). The Reynolds number was Reλ ≈ 188.
Detailed information about both data sets are given in Section 4.

We begin by evaluating the error that results from truncating the
Taylor series in eq. (5). The ratio between αh i and its first order

Fig. 3 | Evolution of the pair dispersion angle. a Evolution of the average angle
between the separation and the relative velocity vectors as a function of time.
Continuous lines show DNS results for various ensembles grouped by the initial
separation distance for values in the inertial range; the bin edges used to form the
ensembles are l0/η =0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 130, 160, and 200,
where the arrow runs from lower to higher values. Lines in the inset show the same
data plotted with time normalized by the Batchelor timescale. Circles correspond
to the experimental results, averagedover all pairswith r0 < 70ηwith anuncertainty

of ± 2∘ based on the data range across the l0 groups (Fig. S3). The dot-dashed line
correspond to eq. (9). The dashed black line and the shaded region mark the
estimated value of θ

" #
= 59:3 ± 2%. b Evolution of the average of θ for pairs with

initial separation outside the inertial range. Data are shown for initial separation
distances of l0/η = 483, 594, 704, 812, 915, and 1006. These values correspond to l0/
L = 1.00, 1.24, 1.47, 1.69, 1.91, and 2.10. The horizontal dashed line marks the
θ
" #

= 59:3% value, and the vertical dashed line marks one integral timescale.

Article https://doi.org/10.1038/s41467-023-39903-6
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Persistence of correlations

I. M.  Sokolov, PRE 60.5 (1999): 5528.

<latexit sha1_base64="Edl5XA9ivQG7Cp59kOTXknIpOso="></latexit>

h(�Rv)2i ⇠ (�Lv)
2

✓
R

L

◆↵

<latexit sha1_base64="O/lHlqc9NwnM+ttM1KIMVRVDvms="></latexit>

⌧R ⇠ TL

✓
R

L

◆�

When is the diffusive equation valid?
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 Richardson diffusion: refined view
So far we ignored the initial separation 
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So we should expect that if we start with  the initial velocity  will be “maintained” for a time R0 ∈ [η, L] δR0
u τ(R0)

Typical time at scale R

Therefore  we should expect a “ballistic” regime0 < t < τ(R0)
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2i t2 (so-called Batchelor dispersion)

This adds some difficulties in observing Richardson dispersion for large initial separations

where u¶ is the root mean square (rms) veloc-
ity of the turbulent fluctuations and L is the
largest length scale of the turbulence. In our
water flow at Rl 0 815, which is the highest
Reynolds number reported in this work, th 0
0.54 ms; therefore, very fast detectors must
be used to resolve the fine structure of the
flow. Previously, by using silicon strip detec-
tors from high-energy physics experiments
(18, 19), we extended the particle tracking tech-
nique to flows with high turbulence levels.
Such detectors, however, are unsuitable for
measuring the statistics of many tracer particles
at once. We therefore used three Phantom v7.1
digital cameras from Vision Research, Inc.
(Wayne, NJ), which record 27,000 pictures
per second at a resolution of 256 ! 256 pixels
(Fig. 1A). This camera system can be used to
track several hundred particles at once (21).
An example of two such simultaneously mea-
sured particle tracks is shown in Fig. 1B.

We generated turbulence between coaxial
counter-rotating baffled disks in a closed cham-
ber with a volume of approximately 0.1 m3

(Fig. 1A). We made measurements in a sub-
volume of roughly 5 ! 5 ! 5 cm3 in the
center of the tank, where the mean flow is sta-
tistically zero. Polystyrene tracer particles 25
mm in diameter, comparable to the Kolmogorov
length scale h 0 (n3/e)1/4, which is the smallest
scale of the turbulence, were illuminated by
two frequency-doubled, pulsed Nd–yttrium-
aluminum-garnet (Nd:YAG) lasers, with a com-
bined power of roughly 150 W. The particle
positions were measured with a precision of
roughly 0.1 pixels (21), corresponding to about
20 mm in the flow. Further description of this
flow has been reported previously (18, 19).

By analyzing our measured particle tracks,
we investigated the time evolution of the mean
square separation between two fluid elements.
Predictions for the superdiffusivity of this pair
dispersion in turbulence date back to 1926,
when Richardson (10) suggested that it should
grow in time as t3. By applying Kolmogorov_s
scaling theory (22), Obukhov (23) specified
that in the inertial range of turbulence, where
the only relevant flow parameter is the energy
dissipation rate per unit mass e, the pair
dispersion should grow as get3, where g is a
universal constant. Batchelor (11) refined this
work, predicting that the mean square separa-
tion should grow as t2 for times shorter than a
characteristic timescale t0, which depends on
the initial separation of the pair.

By defining D(t) as the separation of two fluid
elements at time t and defining D0 as the initial
separation between the fluid elements, Batchelor
predicted that for D0 in the inertial range
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where C2 is the universal constant in the inertial
range scaling law for the Eulerian second-order
velocity structure function with a well-known
value of approximately 2.13 (24). In the classical
cascade model of turbulence, t0 may be identified
as the time for which the two fluid elements
Bremember[ their initial relative velocity as they
move in the same eddy of size D0. At times on
the order of t0, this eddy breaks up, and the
growth of the pair separation is expected to
undergo a transition to Richardson-Obukhov
scaling.

To distinguish between Batchelor and
Richardson-Obukhov scaling, the inertial range
must be large, so that there will be a large sep-
aration between the eddy turnover time TL
and the Kolmogorov time th. To achieve such
a wide range of scales, the turbulence level
must be high because Rl È (TL/th). Based on

evidence from direct numerical simulation
(25), a turbulence level of at least Rl 0 600 to
700 is required to see true inertial range scal-
ing of a Lagrangian quantity such as relative
dispersion. Previous experimental and compu-
tational studies of dispersion have been lim-
ited by their low turbulence levels (Rl G 300)
(12–15, 17) and have not been conclusive. High
turbulence levels are obtained in kinematic
simulation models (16), but such models
may not be suited to the pair dispersion prob-
lem (26).

Figure 2 shows measurements of relative
dispersion for turbulence levels up to Rl 0
815. We found that for experimentally acces-
sible initial separations, our data scales as t2

for more than two decades in time, with no
hint of classical Richardson-Obukhov t3 scal-
ing. This behavior holds throughout the entire

Fig. 1. (A) Sketch of the experimental setup. Three high-speed cameras were used to record the
three-dimensional tracks of tracer particles in intense turbulence. The particles were illuminated by
two high-power lasers. (B) A pair of measured particle trajectories at Rl 0 690. The small spheres
mark every other measured position of the particles and are separated by 0.074 ms (,th/13) in
time; the large spheres mark every 30th position. The color of the spheres indicates the magnitude
of each particle’s absolute velocity in units of m/s. The particles enter the measurement volume as
indicated by the arrows and separate under the influence of the turbulence.

Fig. 2. Evolution of the
mean square particle
separation. The mean
square separation be-
tween particle pairs is
plotted against time for
50 different initial sep-
arations at a turbulence
level of Rl 0 815, with
the time axis normal-
ized by the Kolmogorov
scales. Each curve rep-
resents a bin of initial
separations 1 mm wide
(,43h), ranging from
0 to 1 mm to 49 to 50
mm. The curves are
scaled by the constant
(113 )C2(eD0)

2/3 (Eq. 1).
The data collapse onto

a single universal power law. The bold black line is the power law predicted by Batchelor (11).
Because the smallest D0 measured is not in the inertial range, we do not expect it to scale perfectly
as t2, and indeed it does not scale as well as the larger D0. The inset shows the same curves scaled
simply by the Kolmogorov length, for which we see no scale collapse. For both plots, we see no
Richardson-Obukhov t3 scaling.
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where u¶ is the root mean square (rms) veloc-
ity of the turbulent fluctuations and L is the
largest length scale of the turbulence. In our
water flow at Rl 0 815, which is the highest
Reynolds number reported in this work, th 0
0.54 ms; therefore, very fast detectors must
be used to resolve the fine structure of the
flow. Previously, by using silicon strip detec-
tors from high-energy physics experiments
(18, 19), we extended the particle tracking tech-
nique to flows with high turbulence levels.
Such detectors, however, are unsuitable for
measuring the statistics of many tracer particles
at once. We therefore used three Phantom v7.1
digital cameras from Vision Research, Inc.
(Wayne, NJ), which record 27,000 pictures
per second at a resolution of 256 ! 256 pixels
(Fig. 1A). This camera system can be used to
track several hundred particles at once (21).
An example of two such simultaneously mea-
sured particle tracks is shown in Fig. 1B.

We generated turbulence between coaxial
counter-rotating baffled disks in a closed cham-
ber with a volume of approximately 0.1 m3

(Fig. 1A). We made measurements in a sub-
volume of roughly 5 ! 5 ! 5 cm3 in the
center of the tank, where the mean flow is sta-
tistically zero. Polystyrene tracer particles 25
mm in diameter, comparable to the Kolmogorov
length scale h 0 (n3/e)1/4, which is the smallest
scale of the turbulence, were illuminated by
two frequency-doubled, pulsed Nd–yttrium-
aluminum-garnet (Nd:YAG) lasers, with a com-
bined power of roughly 150 W. The particle
positions were measured with a precision of
roughly 0.1 pixels (21), corresponding to about
20 mm in the flow. Further description of this
flow has been reported previously (18, 19).

By analyzing our measured particle tracks,
we investigated the time evolution of the mean
square separation between two fluid elements.
Predictions for the superdiffusivity of this pair
dispersion in turbulence date back to 1926,
when Richardson (10) suggested that it should
grow in time as t3. By applying Kolmogorov_s
scaling theory (22), Obukhov (23) specified
that in the inertial range of turbulence, where
the only relevant flow parameter is the energy
dissipation rate per unit mass e, the pair
dispersion should grow as get3, where g is a
universal constant. Batchelor (11) refined this
work, predicting that the mean square separa-
tion should grow as t2 for times shorter than a
characteristic timescale t0, which depends on
the initial separation of the pair.

By defining D(t) as the separation of two fluid
elements at time t and defining D0 as the initial
separation between the fluid elements, Batchelor
predicted that for D0 in the inertial range
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where C2 is the universal constant in the inertial
range scaling law for the Eulerian second-order
velocity structure function with a well-known
value of approximately 2.13 (24). In the classical
cascade model of turbulence, t0 may be identified
as the time for which the two fluid elements
Bremember[ their initial relative velocity as they
move in the same eddy of size D0. At times on
the order of t0, this eddy breaks up, and the
growth of the pair separation is expected to
undergo a transition to Richardson-Obukhov
scaling.

To distinguish between Batchelor and
Richardson-Obukhov scaling, the inertial range
must be large, so that there will be a large sep-
aration between the eddy turnover time TL
and the Kolmogorov time th. To achieve such
a wide range of scales, the turbulence level
must be high because Rl È (TL/th). Based on

evidence from direct numerical simulation
(25), a turbulence level of at least Rl 0 600 to
700 is required to see true inertial range scal-
ing of a Lagrangian quantity such as relative
dispersion. Previous experimental and compu-
tational studies of dispersion have been lim-
ited by their low turbulence levels (Rl G 300)
(12–15, 17) and have not been conclusive. High
turbulence levels are obtained in kinematic
simulation models (16), but such models
may not be suited to the pair dispersion prob-
lem (26).

Figure 2 shows measurements of relative
dispersion for turbulence levels up to Rl 0
815. We found that for experimentally acces-
sible initial separations, our data scales as t2

for more than two decades in time, with no
hint of classical Richardson-Obukhov t3 scal-
ing. This behavior holds throughout the entire

Fig. 1. (A) Sketch of the experimental setup. Three high-speed cameras were used to record the
three-dimensional tracks of tracer particles in intense turbulence. The particles were illuminated by
two high-power lasers. (B) A pair of measured particle trajectories at Rl 0 690. The small spheres
mark every other measured position of the particles and are separated by 0.074 ms (,th/13) in
time; the large spheres mark every 30th position. The color of the spheres indicates the magnitude
of each particle’s absolute velocity in units of m/s. The particles enter the measurement volume as
indicated by the arrows and separate under the influence of the turbulence.

Fig. 2. Evolution of the
mean square particle
separation. The mean
square separation be-
tween particle pairs is
plotted against time for
50 different initial sep-
arations at a turbulence
level of Rl 0 815, with
the time axis normal-
ized by the Kolmogorov
scales. Each curve rep-
resents a bin of initial
separations 1 mm wide
(,43h), ranging from
0 to 1 mm to 49 to 50
mm. The curves are
scaled by the constant
(113 )C2(eD0)

2/3 (Eq. 1).
The data collapse onto

a single universal power law. The bold black line is the power law predicted by Batchelor (11).
Because the smallest D0 measured is not in the inertial range, we do not expect it to scale perfectly
as t2, and indeed it does not scale as well as the larger D0. The inset shows the same curves scaled
simply by the Kolmogorov length, for which we see no scale collapse. For both plots, we see no
Richardson-Obukhov t3 scaling.
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Indeed, in the limit of velocity field d-correlated in time
(the so-called Kraichnan model of turbulence) the diffusion
equation of the type of Eq. (1) becomes exact [13,14]. In
the general case of real turbulence with finite time correla-
tions, a theoretical derivation of the general properties of
p!r, t" is still not available. This is because the Lagrangian
relative velocity correlation time grows with time, and thus
in absence of decorrelation, central limit theorem cannot
be applied [14]. The effects of finite correlation time have
been recently discussed in [8,15,16].

There is still a large uncertainty on the value of C2,
ranging from O!1022" O!1021" for kinematic simulations
[5,6] to O!1" or more in the case of closure predictions
[2]. A recent experimental investigation gives the value
C2 ! 0.5 [4]. The hypothesis of self-similarity is rea-
sonable with a self-affine Eulerian velocity, such as in
the case of two-dimensional inverse cascade turbulence,
where the dimensional exponents a2n ! 3n#2 have indeed
been found [8]. A recent analysis of a kinematic model
with synthetic velocity field has shown that Lagrangian
self-similarity is broken in the presence of Eulerian inter-
mittency. In this case the exponents an have been found
in agreement with the prediction of a multifractal approach
for Lagrangian statistics. In particular, the second moment
of relative dispersion is not affected by intermittency, i.e.,
a2 ! 3 [10], essentially because it is proportional to ´1.
We recall that Lagrangian intermittency has been observed
also in the case of the so-called strong anomalous diffusion
[17]. Although in that case the mechanism leading to in-
termittency is different (there is no scaling invariant flow),
the implication for Lagrangian description is identical; i.e.,
the process cannot be described by a Fokker-Planck equa-
tion like (1).

We now turn to our numerical procedure. The tur-
bulent velocity field is generated by direct integration of
Navier-Stokes equation in a periodic box of size L ! 2p.
The integration is done on a Cray T3E parallel computer
by means of a pseudospectral code at resolution 2563 with
Rel $ 200. Energy is injected into the flow by keeping
the total energy in each of the two first wave number shells
constant [18] and is removed by a second-order hypervis-
cous dissipation.

Passive tracer trajectories are obtained by integrating
"x!t" ! u!!!x!t", t""" with the velocity at particle positions ob-
tained by linear interpolation from the nearest grid points.
A single run follows the evolution of separations of about
3 3 105 pairs starting from initial separation R!0" !
L#256 until they have all reached the integral scale. The
reported results are obtained after averaging over 10
independent runs.

In Fig. 1 we plot the second moment of relative disper-
sion R2!t". The Richardson t3 law (4) is clearly observable
although systematic deviations are detectable, in particu-
lar in the compensated plot. These deviations, observed
also in kinematic simulations [10] and in two-dimensional
turbulence [8], are due to finite size effects. Consider a
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FIG. 1. Relative dispersion R2!t" versus time t. The dashed
line is the Richardson t3 law. In the inset we show the compen-
sated plot R2!t"#´t3 which should give the Richardson constant
C2. Because of the strong oscillation, a precise estimation of
C2 is difficult.

series of pair dispersion experiments, in each of which a
couple of particles is released at time t ! 0 at initial sepa-
ration R!0". At a fixed time t one performs an average over
all realizations and computes R2!t". For t small R2!t" is
dominated by the initial distance, so that the R2!t" curve
flattens. For large times some pairs might have reached
a separation larger than the integral scale and thus show
normal (not Richardson) diffusion, so that the R2!t" de-
pendence flattens again. Under these conditions, a precise
determination of the exponents and coefficients in (4), in
particular the Richardson constant C2, is very difficult.

The distribution of relative separations is plotted in
Fig. 2 for three different times. The form of the pdf is
very close to the Richardson prediction (3) and excludes
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FIG. 2. Probability distribution function of relative separations
at three different times. The continuous line is the Richardson
prediction (3), and the dashed line is the Gaussian distribution
proposed by Batchelor.
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TABLE I. Parameters of the numerical simulations in arbitrary units where the box size is 2π . N is the number of grid points, Rλ

the Taylor-based Reynolds number, ν the kinematic viscosity, ε the averaged energy dissipation rate, urms the root-mean-square velocity,
η = (ν3/ε)1/4 the Kolmogorov dissipative scale, τη = (ν/ε)1/2 the associated turnover time, L = u3

rms/ε the integral scale, and T = L/urms the
associated large-scale turnover time.

N Rλ ν ε urms η τη L T

20483 460 2.5 × 10−5 3.6 × 10−3 0.19 1.4 × 10−3 0.083 1.85 9.9
40963 730 1.0 × 10−5 3.8 × 10−3 0.19 7.2 × 10−4 0.05 1.85 9.6

large-scale forcing is integrated in a periodic domain using a
massively parallel spectral solver at two different resolutions.
Table I summarizes the parameters of the simulations (see
Ref. [19] for more details). In each case, the flow is seeded
with 107 Lagrangian tracers. Their positions, velocities, and
accelerations are then stored with enough frequency to study
relative motion.

We first report results on the behavior of the separation δx(t)
as a function of time. Following Ref. [14], a Taylor expansion
at short times leads to

〈|δx(t) − δx(0)|2〉r0 = t2S2(r0) + t3 〈δu · δa〉 + O(t4), (2)

where S2(r) = 〈|δu|2〉 is the second-order structure function,
〈·〉 denote Eulerian averages, and δa(t) = a(X1,t) − a(X2,t)
is the difference of the fluid acceleration sampled by the
two tracers (using the notation a = ∂t u + u · ∇u). As long
as the term ∝t2 is dominant, the tracers separate ballistically.
Expansion (2) clearly fails for t ≈ t0 = S2(r0)/|〈δu · δa〉|. It
is known [7,20] that for separations in the inertial range,
〈δu · δa〉 = −2ε, which is nothing but a Lagrangian version
of the 4/5 law. This implies that the ballistic regime ends at
times of the order of

t0 = S2(r0)/(2ε). (3)

This time scale can be interpreted as the time required to
dissipate the kinetic energy contained at the scale r0. We
thus expect it to be equal to the correlation time of the initial
velocity difference. t0 differs from the turnover time τ (r0) =
r0/[S2(r0)]1/2 defined as the ratio between the separation r0 and
the typical turbulent velocity at that scale. When Kolmogorov
1941 scaling is assumed, these two time scales have the
same dependency on r0. However, usual estimates of the
Kolmogorov constant lead to t0/τ (r0) ≈ 20. Also, note that
intermittency corrections to the scaling behavior of S2 should
in principle decrease this ratio. We indeed have t0 ∝ r

ζ2
0 and

τ (r0) ∝ r
1−ζ2/2
0 , where ζ2 denotes the scaling exponent of

the second-order structure function; this is evidenced in the
inset of Fig. 1. The main body of this figure represents the
mean-squared displacement rescaled by t2

0 S2(r0) as a function
of t/t0, for various values of the initial separation r0. In such
units and when r0 is far in the inertial range, all measurements
collapse onto a single curve. The subleading term ∝t3 in (2) is
relevant for times t ! 0.01t0. Note that we have checked that
the same data using the turnover time τ (r0) instead of t0 does
not display such a collapse.

The data collapse extends to times larger than t0 when
the mean-squared separation tends to Richardson t3 regime.
This unexpected fact implies that t0 is not only the time
scale of departure from the ballistic regime, but also that of

convergence to Richardson’s law. More precisely, numerical
data suggest that for t ' t0

〈|δx(t) − δx(0)|2〉r0 = gεt3 [1 + Ct0/t] + h.o.t. (4)

C does not strongly depend on the Reynolds number. Sys-
tematic measurements as a function of the initial separation
show that C is negative when r0 is of the order of the
Kolmogorov scale η. The convergence to Richardson law is
then from below and is thus contaminated by tracer pairs
which spend long times close together before sampling the
inertial range; this is consistent with the findings of Ref. [18].
When r0 is far enough in the inertial range, C ≈ 1.6 becomes
independent of the initial separation and the convergence
to Richardson law is from above. One finds that C = 0 for
r0 ≈ 4η; the only subleading terms in (4) are then of higher
order, so that the mean-squared separation converges faster to
the Richardson regime. Such an initial separation could be an
“optimal choice” to observe the t3 behavior in experimental
settings.

To understand why the time scale of convergence to
Richardson law is of the order of t0, let us examine the time
scales entering the relative dispersion process. As already
stated, the velocity difference δu between the two tracers
stays correlated over a time that increases too fast with the
separation, making it difficult to justify the diffusive approach
(1). However, it is known that turbulent acceleration, which is
a small-scale quantity, is correlated over times that are of the
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FIG. 1. (Color online) Time evolution of the mean-square sepa-
ration for Rλ = 730 and various initial separations. The dashed line
represents the behavior (2). The solid line is a fit to the Richardson
regime (4) with g = 0.52 and C = 1.6. Inset: t0 as a function of
r0 in dissipative-scale units. The solid line is an Eulerian average,
the circles are Lagrangian measurements, and the dashed line is the
turnover time τ (r0).
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TABLE I. Parameters of the numerical simulations in arbitrary units where the box size is 2π . N is the number of grid points, Rλ

the Taylor-based Reynolds number, ν the kinematic viscosity, ε the averaged energy dissipation rate, urms the root-mean-square velocity,
η = (ν3/ε)1/4 the Kolmogorov dissipative scale, τη = (ν/ε)1/2 the associated turnover time, L = u3

rms/ε the integral scale, and T = L/urms the
associated large-scale turnover time.

N Rλ ν ε urms η τη L T

20483 460 2.5 × 10−5 3.6 × 10−3 0.19 1.4 × 10−3 0.083 1.85 9.9
40963 730 1.0 × 10−5 3.8 × 10−3 0.19 7.2 × 10−4 0.05 1.85 9.6

large-scale forcing is integrated in a periodic domain using a
massively parallel spectral solver at two different resolutions.
Table I summarizes the parameters of the simulations (see
Ref. [19] for more details). In each case, the flow is seeded
with 107 Lagrangian tracers. Their positions, velocities, and
accelerations are then stored with enough frequency to study
relative motion.

We first report results on the behavior of the separation δx(t)
as a function of time. Following Ref. [14], a Taylor expansion
at short times leads to

〈|δx(t) − δx(0)|2〉r0 = t2S2(r0) + t3 〈δu · δa〉 + O(t4), (2)

where S2(r) = 〈|δu|2〉 is the second-order structure function,
〈·〉 denote Eulerian averages, and δa(t) = a(X1,t) − a(X2,t)
is the difference of the fluid acceleration sampled by the
two tracers (using the notation a = ∂t u + u · ∇u). As long
as the term ∝t2 is dominant, the tracers separate ballistically.
Expansion (2) clearly fails for t ≈ t0 = S2(r0)/|〈δu · δa〉|. It
is known [7,20] that for separations in the inertial range,
〈δu · δa〉 = −2ε, which is nothing but a Lagrangian version
of the 4/5 law. This implies that the ballistic regime ends at
times of the order of

t0 = S2(r0)/(2ε). (3)

This time scale can be interpreted as the time required to
dissipate the kinetic energy contained at the scale r0. We
thus expect it to be equal to the correlation time of the initial
velocity difference. t0 differs from the turnover time τ (r0) =
r0/[S2(r0)]1/2 defined as the ratio between the separation r0 and
the typical turbulent velocity at that scale. When Kolmogorov
1941 scaling is assumed, these two time scales have the
same dependency on r0. However, usual estimates of the
Kolmogorov constant lead to t0/τ (r0) ≈ 20. Also, note that
intermittency corrections to the scaling behavior of S2 should
in principle decrease this ratio. We indeed have t0 ∝ r

ζ2
0 and

τ (r0) ∝ r
1−ζ2/2
0 , where ζ2 denotes the scaling exponent of

the second-order structure function; this is evidenced in the
inset of Fig. 1. The main body of this figure represents the
mean-squared displacement rescaled by t2

0 S2(r0) as a function
of t/t0, for various values of the initial separation r0. In such
units and when r0 is far in the inertial range, all measurements
collapse onto a single curve. The subleading term ∝t3 in (2) is
relevant for times t ! 0.01t0. Note that we have checked that
the same data using the turnover time τ (r0) instead of t0 does
not display such a collapse.

The data collapse extends to times larger than t0 when
the mean-squared separation tends to Richardson t3 regime.
This unexpected fact implies that t0 is not only the time
scale of departure from the ballistic regime, but also that of

convergence to Richardson’s law. More precisely, numerical
data suggest that for t ' t0

〈|δx(t) − δx(0)|2〉r0 = gεt3 [1 + Ct0/t] + h.o.t. (4)

C does not strongly depend on the Reynolds number. Sys-
tematic measurements as a function of the initial separation
show that C is negative when r0 is of the order of the
Kolmogorov scale η. The convergence to Richardson law is
then from below and is thus contaminated by tracer pairs
which spend long times close together before sampling the
inertial range; this is consistent with the findings of Ref. [18].
When r0 is far enough in the inertial range, C ≈ 1.6 becomes
independent of the initial separation and the convergence
to Richardson law is from above. One finds that C = 0 for
r0 ≈ 4η; the only subleading terms in (4) are then of higher
order, so that the mean-squared separation converges faster to
the Richardson regime. Such an initial separation could be an
“optimal choice” to observe the t3 behavior in experimental
settings.

To understand why the time scale of convergence to
Richardson law is of the order of t0, let us examine the time
scales entering the relative dispersion process. As already
stated, the velocity difference δu between the two tracers
stays correlated over a time that increases too fast with the
separation, making it difficult to justify the diffusive approach
(1). However, it is known that turbulent acceleration, which is
a small-scale quantity, is correlated over times that are of the
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TABLE I. Parameters of the numerical simulations in arbitrary units where the box size is 2π . N is the number of grid points, Rλ

the Taylor-based Reynolds number, ν the kinematic viscosity, ε the averaged energy dissipation rate, urms the root-mean-square velocity,
η = (ν3/ε)1/4 the Kolmogorov dissipative scale, τη = (ν/ε)1/2 the associated turnover time, L = u3

rms/ε the integral scale, and T = L/urms the
associated large-scale turnover time.

N Rλ ν ε urms η τη L T

20483 460 2.5 × 10−5 3.6 × 10−3 0.19 1.4 × 10−3 0.083 1.85 9.9
40963 730 1.0 × 10−5 3.8 × 10−3 0.19 7.2 × 10−4 0.05 1.85 9.6

large-scale forcing is integrated in a periodic domain using a
massively parallel spectral solver at two different resolutions.
Table I summarizes the parameters of the simulations (see
Ref. [19] for more details). In each case, the flow is seeded
with 107 Lagrangian tracers. Their positions, velocities, and
accelerations are then stored with enough frequency to study
relative motion.

We first report results on the behavior of the separation δx(t)
as a function of time. Following Ref. [14], a Taylor expansion
at short times leads to

〈|δx(t) − δx(0)|2〉r0 = t2S2(r0) + t3 〈δu · δa〉 + O(t4), (2)

where S2(r) = 〈|δu|2〉 is the second-order structure function,
〈·〉 denote Eulerian averages, and δa(t) = a(X1,t) − a(X2,t)
is the difference of the fluid acceleration sampled by the
two tracers (using the notation a = ∂t u + u · ∇u). As long
as the term ∝t2 is dominant, the tracers separate ballistically.
Expansion (2) clearly fails for t ≈ t0 = S2(r0)/|〈δu · δa〉|. It
is known [7,20] that for separations in the inertial range,
〈δu · δa〉 = −2ε, which is nothing but a Lagrangian version
of the 4/5 law. This implies that the ballistic regime ends at
times of the order of

t0 = S2(r0)/(2ε). (3)

This time scale can be interpreted as the time required to
dissipate the kinetic energy contained at the scale r0. We
thus expect it to be equal to the correlation time of the initial
velocity difference. t0 differs from the turnover time τ (r0) =
r0/[S2(r0)]1/2 defined as the ratio between the separation r0 and
the typical turbulent velocity at that scale. When Kolmogorov
1941 scaling is assumed, these two time scales have the
same dependency on r0. However, usual estimates of the
Kolmogorov constant lead to t0/τ (r0) ≈ 20. Also, note that
intermittency corrections to the scaling behavior of S2 should
in principle decrease this ratio. We indeed have t0 ∝ r

ζ2
0 and

τ (r0) ∝ r
1−ζ2/2
0 , where ζ2 denotes the scaling exponent of

the second-order structure function; this is evidenced in the
inset of Fig. 1. The main body of this figure represents the
mean-squared displacement rescaled by t2

0 S2(r0) as a function
of t/t0, for various values of the initial separation r0. In such
units and when r0 is far in the inertial range, all measurements
collapse onto a single curve. The subleading term ∝t3 in (2) is
relevant for times t ! 0.01t0. Note that we have checked that
the same data using the turnover time τ (r0) instead of t0 does
not display such a collapse.

The data collapse extends to times larger than t0 when
the mean-squared separation tends to Richardson t3 regime.
This unexpected fact implies that t0 is not only the time
scale of departure from the ballistic regime, but also that of

convergence to Richardson’s law. More precisely, numerical
data suggest that for t ' t0

〈|δx(t) − δx(0)|2〉r0 = gεt3 [1 + Ct0/t] + h.o.t. (4)

C does not strongly depend on the Reynolds number. Sys-
tematic measurements as a function of the initial separation
show that C is negative when r0 is of the order of the
Kolmogorov scale η. The convergence to Richardson law is
then from below and is thus contaminated by tracer pairs
which spend long times close together before sampling the
inertial range; this is consistent with the findings of Ref. [18].
When r0 is far enough in the inertial range, C ≈ 1.6 becomes
independent of the initial separation and the convergence
to Richardson law is from above. One finds that C = 0 for
r0 ≈ 4η; the only subleading terms in (4) are then of higher
order, so that the mean-squared separation converges faster to
the Richardson regime. Such an initial separation could be an
“optimal choice” to observe the t3 behavior in experimental
settings.

To understand why the time scale of convergence to
Richardson law is of the order of t0, let us examine the time
scales entering the relative dispersion process. As already
stated, the velocity difference δu between the two tracers
stays correlated over a time that increases too fast with the
separation, making it difficult to justify the diffusive approach
(1). However, it is known that turbulent acceleration, which is
a small-scale quantity, is correlated over times that are of the
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regime (4) with g = 0.52 and C = 1.6. Inset: t0 as a function of
r0 in dissipative-scale units. The solid line is an Eulerian average,
the circles are Lagrangian measurements, and the dashed line is the
turnover time τ (r0).
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TABLE I. Parameters of the numerical simulations in arbitrary units where the box size is 2π . N is the number of grid points, Rλ

the Taylor-based Reynolds number, ν the kinematic viscosity, ε the averaged energy dissipation rate, urms the root-mean-square velocity,
η = (ν3/ε)1/4 the Kolmogorov dissipative scale, τη = (ν/ε)1/2 the associated turnover time, L = u3

rms/ε the integral scale, and T = L/urms the
associated large-scale turnover time.

N Rλ ν ε urms η τη L T

20483 460 2.5 × 10−5 3.6 × 10−3 0.19 1.4 × 10−3 0.083 1.85 9.9
40963 730 1.0 × 10−5 3.8 × 10−3 0.19 7.2 × 10−4 0.05 1.85 9.6

large-scale forcing is integrated in a periodic domain using a
massively parallel spectral solver at two different resolutions.
Table I summarizes the parameters of the simulations (see
Ref. [19] for more details). In each case, the flow is seeded
with 107 Lagrangian tracers. Their positions, velocities, and
accelerations are then stored with enough frequency to study
relative motion.

We first report results on the behavior of the separation δx(t)
as a function of time. Following Ref. [14], a Taylor expansion
at short times leads to

〈|δx(t) − δx(0)|2〉r0 = t2S2(r0) + t3 〈δu · δa〉 + O(t4), (2)

where S2(r) = 〈|δu|2〉 is the second-order structure function,
〈·〉 denote Eulerian averages, and δa(t) = a(X1,t) − a(X2,t)
is the difference of the fluid acceleration sampled by the
two tracers (using the notation a = ∂t u + u · ∇u). As long
as the term ∝t2 is dominant, the tracers separate ballistically.
Expansion (2) clearly fails for t ≈ t0 = S2(r0)/|〈δu · δa〉|. It
is known [7,20] that for separations in the inertial range,
〈δu · δa〉 = −2ε, which is nothing but a Lagrangian version
of the 4/5 law. This implies that the ballistic regime ends at
times of the order of

t0 = S2(r0)/(2ε). (3)

This time scale can be interpreted as the time required to
dissipate the kinetic energy contained at the scale r0. We
thus expect it to be equal to the correlation time of the initial
velocity difference. t0 differs from the turnover time τ (r0) =
r0/[S2(r0)]1/2 defined as the ratio between the separation r0 and
the typical turbulent velocity at that scale. When Kolmogorov
1941 scaling is assumed, these two time scales have the
same dependency on r0. However, usual estimates of the
Kolmogorov constant lead to t0/τ (r0) ≈ 20. Also, note that
intermittency corrections to the scaling behavior of S2 should
in principle decrease this ratio. We indeed have t0 ∝ r

ζ2
0 and

τ (r0) ∝ r
1−ζ2/2
0 , where ζ2 denotes the scaling exponent of

the second-order structure function; this is evidenced in the
inset of Fig. 1. The main body of this figure represents the
mean-squared displacement rescaled by t2

0 S2(r0) as a function
of t/t0, for various values of the initial separation r0. In such
units and when r0 is far in the inertial range, all measurements
collapse onto a single curve. The subleading term ∝t3 in (2) is
relevant for times t ! 0.01t0. Note that we have checked that
the same data using the turnover time τ (r0) instead of t0 does
not display such a collapse.

The data collapse extends to times larger than t0 when
the mean-squared separation tends to Richardson t3 regime.
This unexpected fact implies that t0 is not only the time
scale of departure from the ballistic regime, but also that of

convergence to Richardson’s law. More precisely, numerical
data suggest that for t ' t0

〈|δx(t) − δx(0)|2〉r0 = gεt3 [1 + Ct0/t] + h.o.t. (4)

C does not strongly depend on the Reynolds number. Sys-
tematic measurements as a function of the initial separation
show that C is negative when r0 is of the order of the
Kolmogorov scale η. The convergence to Richardson law is
then from below and is thus contaminated by tracer pairs
which spend long times close together before sampling the
inertial range; this is consistent with the findings of Ref. [18].
When r0 is far enough in the inertial range, C ≈ 1.6 becomes
independent of the initial separation and the convergence
to Richardson law is from above. One finds that C = 0 for
r0 ≈ 4η; the only subleading terms in (4) are then of higher
order, so that the mean-squared separation converges faster to
the Richardson regime. Such an initial separation could be an
“optimal choice” to observe the t3 behavior in experimental
settings.

To understand why the time scale of convergence to
Richardson law is of the order of t0, let us examine the time
scales entering the relative dispersion process. As already
stated, the velocity difference δu between the two tracers
stays correlated over a time that increases too fast with the
separation, making it difficult to justify the diffusive approach
(1). However, it is known that turbulent acceleration, which is
a small-scale quantity, is correlated over times that are of the
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regime (4) with g = 0.52 and C = 1.6. Inset: t0 as a function of
r0 in dissipative-scale units. The solid line is an Eulerian average,
the circles are Lagrangian measurements, and the dashed line is the
turnover time τ (r0).

045302-2

C = C(R0)

Optimal choice
C = 0 for R0 ≈ 4η

But depends on the initial separation!



Journal of Turbulence 27

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

r / η

S 2(r
) /

 u
η2

 

 

(a)

Rλ = 730

Rλ = 460

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

r / η

L
oc

al
 S

lo
pe

(b)

Figure 1. (a) Second-order Eulerian structure function S2(r) = 〈|u(x + r, t) − u(x, t)|2〉 for the two
values of the Reynolds number investigated in this paper. The dashed line represents Kolmogorov
1941 scaling S2(r) $ (11/3) C2(ε r)2/3 with C2 = 2.13. The solid line corresponds to She–Lévêque
anomalous scaling with ζ2 ≈ 0.696. The vertical and horizontal colored dashed lines indicate the
integral scale and the large-scale velocity, respectively. (b) Logarithmic derivative d log S2/d log r .
The two horizontal lines encode the two scalings shown in Fig. (a).

ballistic regime), the mean-squared distance approaches the explosive Richardson–
Obukhov regime

〈
|R(t)|2

〉
$ g ε t3. (3)

We observe for both values of the Reynolds number a Richardson–Obukhov constant
g ≈ 0.52 ± 0.05. The low accuracy with which this constant is determined comes from the
fact that, even at the higher resolution, the t3 scaling is observed in a rather limited time
range. This is even clearer from Figure 3(a), which shows the compensated mean squared in-
crease of the distance 〈|R(t) − R(0)|2〉/(ε t3). On this figure, the time has been rescaled by
t0 = S2(r0)/(2ε), where S2 designates the second-order Eulerian structure function with
absolute values. The choice of such a timescale was motivated in [20] as that of devia-
tions from Batchelor’s initial ballistic regime. Surprisingly, the data shown in Figure 3(a)
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Figure 2. Time-evolution of the mean-squared distance for Rλ = 730 (a) and Rλ = 460 (b) for
various initial separations r0 as labeled. The horizontal and vertical solid lines represent the integral
scale L and its associated turnover time τL, respectively. The dashed line corresponds to the explosive
Richardson–Obukhov law (3) with g = 0.52.
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In the EXP only quite large initial separation were available and  they could not be followed for a long time 
that’s why only the ballistic (Batchelor) regime was found
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Indeed, in the limit of velocity field d-correlated in time
(the so-called Kraichnan model of turbulence) the diffusion
equation of the type of Eq. (1) becomes exact [13,14]. In
the general case of real turbulence with finite time correla-
tions, a theoretical derivation of the general properties of
p!r, t" is still not available. This is because the Lagrangian
relative velocity correlation time grows with time, and thus
in absence of decorrelation, central limit theorem cannot
be applied [14]. The effects of finite correlation time have
been recently discussed in [8,15,16].

There is still a large uncertainty on the value of C2,
ranging from O!1022" O!1021" for kinematic simulations
[5,6] to O!1" or more in the case of closure predictions
[2]. A recent experimental investigation gives the value
C2 ! 0.5 [4]. The hypothesis of self-similarity is rea-
sonable with a self-affine Eulerian velocity, such as in
the case of two-dimensional inverse cascade turbulence,
where the dimensional exponents a2n ! 3n#2 have indeed
been found [8]. A recent analysis of a kinematic model
with synthetic velocity field has shown that Lagrangian
self-similarity is broken in the presence of Eulerian inter-
mittency. In this case the exponents an have been found
in agreement with the prediction of a multifractal approach
for Lagrangian statistics. In particular, the second moment
of relative dispersion is not affected by intermittency, i.e.,
a2 ! 3 [10], essentially because it is proportional to ´1.
We recall that Lagrangian intermittency has been observed
also in the case of the so-called strong anomalous diffusion
[17]. Although in that case the mechanism leading to in-
termittency is different (there is no scaling invariant flow),
the implication for Lagrangian description is identical; i.e.,
the process cannot be described by a Fokker-Planck equa-
tion like (1).

We now turn to our numerical procedure. The tur-
bulent velocity field is generated by direct integration of
Navier-Stokes equation in a periodic box of size L ! 2p.
The integration is done on a Cray T3E parallel computer
by means of a pseudospectral code at resolution 2563 with
Rel $ 200. Energy is injected into the flow by keeping
the total energy in each of the two first wave number shells
constant [18] and is removed by a second-order hypervis-
cous dissipation.

Passive tracer trajectories are obtained by integrating
"x!t" ! u!!!x!t", t""" with the velocity at particle positions ob-
tained by linear interpolation from the nearest grid points.
A single run follows the evolution of separations of about
3 3 105 pairs starting from initial separation R!0" !
L#256 until they have all reached the integral scale. The
reported results are obtained after averaging over 10
independent runs.

In Fig. 1 we plot the second moment of relative disper-
sion R2!t". The Richardson t3 law (4) is clearly observable
although systematic deviations are detectable, in particu-
lar in the compensated plot. These deviations, observed
also in kinematic simulations [10] and in two-dimensional
turbulence [8], are due to finite size effects. Consider a
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FIG. 1. Relative dispersion R2!t" versus time t. The dashed
line is the Richardson t3 law. In the inset we show the compen-
sated plot R2!t"#´t3 which should give the Richardson constant
C2. Because of the strong oscillation, a precise estimation of
C2 is difficult.

series of pair dispersion experiments, in each of which a
couple of particles is released at time t ! 0 at initial sepa-
ration R!0". At a fixed time t one performs an average over
all realizations and computes R2!t". For t small R2!t" is
dominated by the initial distance, so that the R2!t" curve
flattens. For large times some pairs might have reached
a separation larger than the integral scale and thus show
normal (not Richardson) diffusion, so that the R2!t" de-
pendence flattens again. Under these conditions, a precise
determination of the exponents and coefficients in (4), in
particular the Richardson constant C2, is very difficult.

The distribution of relative separations is plotted in
Fig. 2 for three different times. The form of the pdf is
very close to the Richardson prediction (3) and excludes
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FIG. 2. Probability distribution function of relative separations
at three different times. The continuous line is the Richardson
prediction (3), and the dashed line is the Gaussian distribution
proposed by Batchelor.
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Figure 6. Probability density function of the distance r at time t = 2.5 t0 (a) and t = 5 t0 (b) and for
various values of the initial separation. We have here normalized it by 4πr2 and represented on a log y
axis as a function of r/〈|R(t)|2〉1/2. With such a choice, Richardson’s diffusive density distribution
(2) appears as a straight line (represented here as a black dashed line).

values clearly smaller than those corresponding to normal scaling. This gives evidence of a
rather weak intermittency in the distribution of tracer separations. Note that the presented
measurements were performed for Rλ = 730 but the same behavior has been observed for
Rλ = 460.

To our knowledge, the most convincing observation of an intermittent behavior in pair
dispersion has been based on an exit-time analysis [23]. However, the relation of such fixed-
scale statistics to the usual fixed-time measurements we report here requires to consider
pair separation velocities. As we will see in Section 3, the velocity difference between two
tracers displays statistics that are much more intermittent than those for pair separation.
This implies that there is no contradiction between an almost normal scaling for distances
as a function of time and an anomalous behavior of exit times as a function of distance.

To investigate further this weak intermittency in the separation distribution, we have
represented in Figure 6 the probability density function (PDF) of the distance |R(t)| for
various initial separation and at times where we expect to have almost converged to the
explosive regime, namely at t = 2.5 t0 (a) and t = 5 t0 (b). Such measurements are compared
to Richardson’s diffusive law (2). Data suggest that a large part of the PDF core (for 0.4 !
|R(t)|/〈|R(t)|2〉1/2 ! 4 at time t = 5 t0) is very well described by Richardson’s approach.
However, deviations are observed in the far tails, at both small and large values of the
separation. Such an observation is consistent with previous numerical observations [7,
13, 23]. Apparently, these deviations affect only weakly the moments we have considered
above. We will come back to investigating and characterizing them in Section 4.

3. Statistics of velocity differences

3.1. A diffusive behavior?

In this section, we are interested in the behavior of the velocity difference V (t) =
u(X1(t), t) − u(X2(t), t) between two tracers as a function of time. Initially, the statistics
of V (0) are exactly given by the Eulerian statistics of velocity increments at a separation r0.
At large times, an explosive t3 behavior for distances implies that 〈|V (t)|2〉 ∝ ε t . A naive
picture would consist in interpolating between these two behaviors by assuming that

〈|V (t)|2〉 % S2(r0) + h ε t, (4)

vrms as the traveling speed. Events beyond rcðtÞ are rare,
and can be detected with high statistics only.

The opposite limit of ‘‘very slow’’ events is also remark-
able (see Fig. 2). Here, we observe a bimodal shape for
Pðr; tÞ at almost all times: the left tail of the pairs with
mutual distance r < ! remains populated for a period of
time up to #60–70"!, which is of the order of the large-

scale eddy turnover time TL. The pairs emitted in regions
with a small stretching rate tend to stay together. We could
empirically find that this tail can be well fitted by a
log-normal distribution (not shown), as for the case of a
spatially smooth flow, shortly correlated in time. Such
strong persistence at subdiffusive scales cannot be brought
back to small-scale clustering effects as those observed in
the dynamics of inertial particles [22]. It must be strongly
sensitive to the intermittent nature of the turbulent stretch-
ing rate with higher than Gaussian probability to have
small and large events.

In Fig. 3, we plot the same data of Fig. 2 but rescaled in

terms of the variable rnðtÞ ¼ r=hr2ðtÞi1=2, and compared
against the asymptotic prediction Eq. (4). Here, the devia-
tions fromPRicðr; tÞ at large scales for all times are evident.A
more stringent test is obtained by showing these same PDFs,
but restricted to the scales in the inertial subrange 30!< r <
300! (inset). Clearly, Eq. (4) is not satisfied. Previous studies

could access events only up to r=hr2ðtÞi1=2 < 3 (seeRef. [3]).
Our study improves by 5 orders of magnitudes (in probabil-
ity) the intensities of detectable events, thus allowing us to
highlight strong deviations from Richardson’s shape. Large
discrepancies can bemeasured also on the left tails ofPðr; tÞ,
associated to very slow separating pairs (see also below).

Such departures from the ideal self-similar Richardson
distribution needs to be better quantified, either in terms of
finite Reynolds effects (breakup of self-similarity of the

turbulent eddy diffusivity) or in terms of the neglected
temporal correlations, or both.
To assess the importance of the former, we have inte-

grated Eq. (3) using an effective eddy diffusivity DeffðrÞ,
which improves Eq. (1) by including viscous and large-
scale behaviors,

Deff
k ðrÞ # r2 r % !

Deff
k ðrÞ # r4=3 ! % r % L0

Deff
k ðrÞ # const r & L0

: (5)

A widely used fitting formula that reproduces well the
Eulerian data, and that matches the expected UV and
IR scaling for both "ðrÞ and hð#rvÞ2i, is obtained by the
following equation [23]:

hð#rvÞ2i ¼ c0
r2

½ðr=!Þ2 þ c1)2=3
!
1þ c2

"
r

L0

#
2
$*1=3

(6)

supplemented with a similar expression for the eddy turn-
over time, "ðrÞ ¼ "!

½ðr=!Þ2þc1)*1=3 ½1þ d2ðr=L0Þ2)*1=3. The

dimensionless parameters c0, c1, c2 are extracted from
the Eulerian statistics, while the parameter d2 is fixed
such as to correctly reproduce the evolution of the mean
square separation hr2ðtÞi over a time range "! + t + TL

(see Fig. 4). Despite the excellent agreement for hr2ðtÞi
shown in Fig. 4, the solution to the diffusive equation (3)
using DeffðrÞ does not match the data in the far tails as
shown in Fig. 5. Self-similarity is broken by the introduc-
tion of UVand IR cutoffs in Eq. (5), and therefore Peffðr; tÞ
no longer rescales at different times as observed in real
turbulent flows. For large times, the agreement with the
DNS data is qualitatively better, but still quantitatively off,
particularly when focusing on the sharp change at rcðtÞ
which is still absent in the evolution given by Eq. (5). This
is a key point, showing that to reproduce the observed drop

FIG. 3. Log-lin plot of Pðrn; tÞ versus the rescaled variable rn
(see text) for t ¼ ð20; 30; 40; 60; 90; 120Þ"!. The distribution

Pðrn; tÞ has been divided by a factor r2n to highlight the large
separation range. The Richardson prediction, Eq. (4), becomes
time independent if rescaled in this way (solid curve). Inset:
PDFs plotted only for separations rn that, at time lag t 2
½10:120)"!, belong to the inertial subrange.

FIG. 4. Log-log plot of hr2ðtÞi from DNS data, and from the
diffusive evolution with eddy diffusivity (5). Inset: time evolu-
tion of the relative probability to observe a large excursion,
I>ð$; tÞ (right y scale), or small excursion I<ð$; tÞ (left y scale)
for $ ¼ 3.
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A source of difficulties

When the turbulent flow is differentiable, i.e., ! ¼ 2,
the PDF takes the log-normal form Pðr; tjr0; 0Þ /
expf$½logðr=r0Þ $ "t&2=ð2!tÞg, where " is the first
Lyapunov exponent and ! is connected to fluctuations of
the strain matrix [4]. In the latter case, particles separate
exponentially and the memory of the initial separation r0
remains at all times. The rate of separation stronglyfluctuates
from point to point and from time to time, being connected to
the fluctuations of the Lyapunov exponents [4,18].

Particle behavior in real flows can deviate from
Richardson’s picture due to several reasons: (i) temporal
correlations of the underlying velocity fluid [5,16,19],
(ii) non-Gaussian velocity fluctuations, (iii) ultraviolet (UV)
effects induced by the dissipation subrange, and (iv) infrared
(IR) effects induced by a large-scale cutoff. These last two are
connected with finite Reynolds effects [20].

The goal of this Letter is twofold. First, we want to
understand and quantify the rate of occurrence of rare ex-
treme events, i.e., the events of pairs that separate much
more or much less than hr2ðtÞi1=2. Second, we aim to assess
the importance of temporal correlations for both pair statis-
tics in general, and extreme events in particular. We per-
formed a series of direct numerical simulations (DNS) of
HIT seeding the fluid with bunches of tracers, emitted in
different locations, to reduce spatial correlations. Each
bunch is emitted within a small region of size '#, in puffs
of 2( 103 tracer particles each. In a single run, there are
256 of such sources, emitting about 200 puffs, with a
frequency comparable with the inverse of the Kolmogorov
time. We performed ten different runs, following a total of
4( 1011 pairs, reaching an unprecedented statistics. In
Fig. 1, we illustrate the complexity of the problem. We first
notice the abrupt transition in particle dispersion occurring
at about '10$# after the emission, when most of the pairs
reach a relative distance of the order of '10#, and the

beginning of an explosive separation in the manner of
Richardson is observed. At a later stage, there are many
pairs with relative separation of the order of the box size
'1000#, even though the mean separation is much smaller
at those time lags. On the contrary, in the inset of Fig. 1 we
show an example of a bunch with an anomalous history due
to tracers that travel close—at mutual distance of the order
of #—for very long times. This happens when pairs are
injected in a space location where the underlying fluid has a
small local stretching rate.
To quantify this phenomenology, we show in Fig. 2 the

right and left tails of Pðr; tÞ at different time lags. The top
panel shows that the fastest events have an exponential-like
tail. A cutoff separation, rcðtÞ is identified when a sharp
change in the slope is observed. The scale rcðtÞ is con-
nected to pairs that are able to separate ‘‘very fast.’’ It
indicates the existence of pairs experiencing a persistently
high relative velocity limited in amplitude by the root mean
squared single point value, vrms [21]. To support this state-
ment, we show in the inset the evolution of rcðtÞwhich is in
good agreement with the linear behavior obtained using

FIG. 1 (color). Typical time history up to t ¼ 75$# of a bunch
emitted from a source of size '#. Inset: Time history for the
same duration of a bunch emitted in a different location, and
which does not separate. DNS are performed on a cubic fully
periodic grid at 10243 collocation points with a pseudospectral
code, at a Reynolds-Taylor number Re" ' 300. For further
details on the numerics; see Ref. [8].

FIG. 2. Top: log-lin plot of Pðr; tÞ at different times after the
emission. For selected values of r, we show error bars, estimated
from the statistical spread of different runs. Inset: evolution
of the cutoff scale rcðtÞ; the continuous line represents the
ballistic motion / vrmst. Bottom: log-log plot of Pðr; tÞ for t ¼
ð10; 20; 30; 40; 50; 60; 70; 90; 120Þ$#. The black squares indicate

the peaks observed for small separations.
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What do we expect according to MF model?
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Figure 4. (a) Fourth-order moment 〈|R(t) − R(0)|4〉 and (b) sixth-order moment 〈|R(t) − R(0)|6〉
as function of t/t0 for Rλ = 730. Both curves are normalized such that their expected long-time
behavior is ∝ (t/t0)6 and ∝ (t/t0)9, respectively. The black dashed lines represent such behaviors.

for t % t0 where these two moments grow like t6 and t9, respectively, with possible minute
deviations. The measured power-laws give evidence that, at sufficiently long times, inter-
tracer distances follow a scale-invariant law. Also the observed collapses indicate that t0
could be again the time of convergence to such a behavior.

The presence of a scale-invariant regime is also clear when making use of ideas borrowed
from extended self-similarity and representing these two moments as a function of 〈|R(t) −
R(0)|2〉 (see Figure 5). This time, for a fixed r0, the smallest separations correspond
to the ballistic regime. There, we trivially have 〈|R(t)− R(0)|p〉/〈|R(t)− R(0)|2〉p/2 &
〈|V (0)|p〉/〈|V (0)|2〉p/2, which has a weak dependence on r0, because of an intermittent
distribution of Eulerian velocity increments, but does not depend on time. This normal
scaling can be observed for t ' t0 in the insets of Figure 5, which represent the logarithmic
derivatives of the high-order moments with respect to the second order. At times of the order
of t0, noticeable deviations to normal scaling can be observed. Finally, at much larger scales,
data corresponding to different values of the initial separation r0 collapse but the curves
start to bend down. One observes in the insets that the associated local slopes approach
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Figure 5. Fourth (a) and sixth (b) order moments of |R(t) − R(0)| as a function of its second-order
moment for Rλ = 730. The two gray dashed lines show a scale-invariant behavior, i.e., 〈|R(t)−
R(0)|4〉 ∝ 〈|R(t)− R(0)|2〉2 and 〈|R(t)− R(0)|6〉 ∝ 〈|R(t)− R(0)|2〉3, respectively. The two insets
show the associated local slopes, that is the logarithmic derivatives d log〈|R(t)− R(0)|p〉/d log〈|R(t)−
R(0)|2〉, together with the normal scalings represented as dashed lines.
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Figure 4. (a) Fourth-order moment 〈|R(t) − R(0)|4〉 and (b) sixth-order moment 〈|R(t) − R(0)|6〉
as function of t/t0 for Rλ = 730. Both curves are normalized such that their expected long-time
behavior is ∝ (t/t0)6 and ∝ (t/t0)9, respectively. The black dashed lines represent such behaviors.

for t % t0 where these two moments grow like t6 and t9, respectively, with possible minute
deviations. The measured power-laws give evidence that, at sufficiently long times, inter-
tracer distances follow a scale-invariant law. Also the observed collapses indicate that t0
could be again the time of convergence to such a behavior.

The presence of a scale-invariant regime is also clear when making use of ideas borrowed
from extended self-similarity and representing these two moments as a function of 〈|R(t) −
R(0)|2〉 (see Figure 5). This time, for a fixed r0, the smallest separations correspond
to the ballistic regime. There, we trivially have 〈|R(t)− R(0)|p〉/〈|R(t)− R(0)|2〉p/2 &
〈|V (0)|p〉/〈|V (0)|2〉p/2, which has a weak dependence on r0, because of an intermittent
distribution of Eulerian velocity increments, but does not depend on time. This normal
scaling can be observed for t ' t0 in the insets of Figure 5, which represent the logarithmic
derivatives of the high-order moments with respect to the second order. At times of the order
of t0, noticeable deviations to normal scaling can be observed. Finally, at much larger scales,
data corresponding to different values of the initial separation r0 collapse but the curves
start to bend down. One observes in the insets that the associated local slopes approach
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Figure 5. Fourth (a) and sixth (b) order moments of |R(t) − R(0)| as a function of its second-order
moment for Rλ = 730. The two gray dashed lines show a scale-invariant behavior, i.e., 〈|R(t)−
R(0)|4〉 ∝ 〈|R(t)− R(0)|2〉2 and 〈|R(t)− R(0)|6〉 ∝ 〈|R(t)− R(0)|2〉3, respectively. The two insets
show the associated local slopes, that is the logarithmic derivatives d log〈|R(t)− R(0)|p〉/d log〈|R(t)−
R(0)|2〉, together with the normal scalings represented as dashed lines.

Multifractal phenomenological prediction

Richardson

Multifractal model clearly works better than Richardson,
particularly when inertia filters out viscous scale fluctuations

multifractal multifractal
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 Richardson diffusion: intermittency & exit times
A possibility to mitigate the statistical effects of pairs that separates quickly  

or remains close for a long time is to look at the exit time statistics

Time for R(t) to pass from R to  with  this eliminates part of the problem  
with fixed time  statistics and focus on the spatial scale avoiding averaging events 
which at the same time involve very different scales. 
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other distributions. Our result is the first direct numerical
evidence of the substantial validity of Richardson’s
equation and gives support to recent experimental findings
[4]. A closer inspection of Fig. 2 reveals, however, that the
self-similar evolution predicted by (1) is not exact. Again,
the deviations from the distribution (3) are mostly due to
finite Reynolds effects: because of the fat tails, a large
fraction of particles exits the inertial range after a very
short time.

To overcome these difficulties in Lagrangian statistics,
an alternative approach based on exit time statistics has
been recently proposed [10,19]. Given a set of thresholds
Rn ! rnR!0" within the inertial range, one computes the
“doubling time” Tr !Rn" defined as the time it takes for
the particle pair separation to grow from threshold Rn to
the next one Rn11. Averages are then performed over many
dispersion experiments, i.e., particle pairs. The outstand-
ing advantage of averaging at fixed-scale separation, as op-
posite to a fixed time, is that it removes crossover effects
since all sampled particle pairs belong to the same scales.
In the simulations presented here, the value r ! 1.2 is
used.

Let us first show how doubling-time analysis can be
used for estimating the Richardson constant C2. Neglect-
ing intermittency, the mean doubling time can be obtained
from the first-passage problem for the Richardson diffu-
sion equation (1) as [8]

#Tr!R"$ !
r2%3 2 1

2k0´1%3r2%3 R2%3. (5)

From (3) and (4) one has C2 ! 1144
81 k3

0 . Comparison with
(5) gives

C2 !
143
81

!r2%3 2 1"3

r2

R2

´#Tr$3 . (6)

In the inset of Fig. 3 we plot expression (6) which gives
directly the value of C2. Although the compensation is not
perfect, it is possible to estimate the Richardson constant
with much better accuracy than from the direct analysis of
Fig. 1. The resulting value, C2 & 0.55, even if affected
by large uncertainty, is remarkably close to the recent ex-
perimental finding [4]. The imperfect compensation is the
consequence of intermittency.

Let us now discuss the issue of intermittency in more
detail and concentrate on the behavior of the moments
of inverse doubling times, #'1%Tr!R"(p $. We expect for
doubling-time statistics a power-law behaviorøµ

1
Tr!R"

∂p¿
) Rbp (7)

with exponents bp connected to the exponents an in (4)
[10]. Negative moments of doubling time are dominated
by pairs which separate fast; this corresponds to posi-
tive moments of relative separation. Kolmogorov scaling,
based on the dimensional analysis, gives #'1%Tr!R"(p$ )
´p%3R22p%3 so that bp ! 22p%3. Intermittency can be
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FIG. 3. First moments of the inverse doubling time
#'1%T !R"(p $ compensated with Kolmogorov scaling R22p%3.
Deviations from dimensional compensation are evident, in par-
ticular for p ! 4. In the inset we plot the compensated mean
doubling time according to (6) together with the estimate cor-
responding to C2 & 0.55.

taken into account by using the simple dimensional esti-
mate for the doubling time, T!R" ) R%du!R", which gives

bp ! zp 2 p , (8)

where zp are the scaling exponents of the longitudinal
structure functions. As a consequence of the Kolmogorov
“4%5” law, z3 ! 1 [20] and the doubling-time exponent not
affected by intermittency is b3 ! 22 [again, the quantity
not affected by intermittency in (7) depends on the first
power of ´] [21].

In Fig. 3 we plot the first moments of inverse dou-
bling time (7) compensated with the Kolmogorov scaling
R22p%3. The quality of the scaling is remarkable, espe-
cially if compared with the standard statistics of Fig. 2.
This allows the detection of small deviations from dimen-
sional scaling. Indeed, a closer inspection of Fig. 3 reveals
that the compensation is not perfect, the deviation being
more evident for higher moments; this is an indication for
Lagrangian intermittency. A consequence of Lagrangian
intermittency is the deviation of exponents in (4) from
dimensional prediction and eventually the breakdown of
self-similarity. Although this cannot directly be measured
within the present numerical simulation, the effect of the
intermittency of doubling time on (4) was indeed observed
in synthetic simulations [10].

Figure 4 shows some moments of the inverse doubling
time, now compensated with best fit exponents bp . The
improvement with respect to Fig. 3 demonstrates that the
exponents in (7) are corrected in comparison to dimen-
sional prediction. From the doubling time exponent bp we
can obtain the Eulerian exponents zp by inverting (8). The
result is shown in the inset of Fig. 3. For comparison with
(8) we also plot the set of Eulerian structure function expo-
nents zp obtained from our velocity field by using extended
self-similarity (ESS) technique [22]. The agreement is
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FIG. 4. First moments of the inverse doubling time
!"1#T $R%&p' compensated with best fit exponent bp . Observe
the improvement in the compensation with respect to Fig. 3. In
the inset we plot the structure function exponents estimated from
zp ! p 1 bp . The dashed line represents the Eulerian expo-
nents obtained by ESS analysis.

remarkable even for high-order moments. We stress that, at
the present resolution, the scaling of the Eulerian structure
function is rather poor, so that only a precise determination
of relative exponents (as given by ESS) is possible. The
overall position of the ESS curve is given by z3 ! 1.

Let us summarize our findings. We have performed di-
rect numerical simulations of a three-dimensional turbulent
flow and concentrated on the problem of particles’ disper-
sion. The overall dispersion behavior is well-described by
the Richardson’s pdf, although some deviations (mostly
caused by the finite-Reynolds nature of the simulations)
are evident. The use of fixed-scale statistics (doubling-time
distribution) instead of fixed-time ones removes to a large
extent these restrictions, and gives a possibility to evalu-
ate the Richardson’s constant very accurately. Its value is
C2 ( 0.55, in a close agreement with recent experimen-
tal findings. The discussion of the inverse moments of the
doubling-time distributions unveils the role of Lagrangian
intermittency in the two-particle dispersion. The values
of the Lagrangian scaling exponents are connected with
the Eulerian structure function exponents zp. The values
of zp obtained from the separation statistics are remark-
ably close to ones obtained by ESS analysis. A natural
question is how general is the picture arising from this pa-
per. A further support in favor of generality comes from
two-dimensional turbulence in the nonintermittent energy
cascade. In that case exit time statistics show no deviations
from dimensional predictions. In the future it will probably

be possible to have experimental Lagrangian trajectories in
high Reynolds number flows [23]. It would be extremely
interesting to check our findings in real fluid turbulence.

We thank A. Celani and M. Cencini for useful comments
and discussions. We acknowledge the allocation of com-
puter resources from INFM Progetto Calcolo Parallelo.
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 Richardson diffusion & role of intermittency
Not completely settled
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Relative Dispersion in Fully Developed Turbulence: The Richardson’s Law
and Intermittency Corrections
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Relative dispersion in fully developed turbulence is investigated by means of direct numerical simu-
lations. Lagrangian statistics is found to be compatible with Richardson description although small
systematic deviations are found. The value of the Richardson constant is estimated as C2 ! 0.55, in a
close agreement with recent experimental findings [S. Ott and J. Mann, J. Fluid Mech. 422, 207 (2000)].
By means of exit-time statistics it is shown that the deviations from Richardson’s law are a consequence
of Eulerian intermittency. The measured Lagrangian scaling exponents require a set of Eulerian structure
function exponents zp which are remarkably close to standard ones known for fully developed turbulence.

DOI: 10.1103/PhysRevLett.88.094501 PACS numbers: 47.27.–i, 47.10.+g

The statistics of two-particle dispersion is historically
one of the first issues which has been quantitatively ad-
dressed in the study of fully developed turbulence. This
was done by Richardson, in a pioneering work on the prop-
erties of dispersion in the atmosphere in 1926 [1], 15 years
before the theoretical development by Kolmogorov and
Obukhov [2]. Despite this fact, there are still relatively
few experimental studies on turbulent Lagrangian disper-
sion. This is essentially due to the difficulties to obtain
Lagrangian trajectories in fully developed turbulent flow.
The first studies were done in geophysical flows (see [2]
for a review) in which Lagrangian tracers are more easily
followed. Recently, the problem was approached in labo-
ratory experiments [3,4] but the results are still not conclu-
sive. Moreover, most of the numerical studies of relative
dispersion rely on kinematic simulations in synthetic flows
[5,6]. Direct numerical simulations have been done mostly
for two-dimensional turbulence [7,8].

The scope of this Letter is to contribute to the under-
standing of relative dispersion by means of direct numeri-
cal simulations of three-dimensional turbulence. In what
follows we show the qualitative validity of the Richard-
son’s description, and discuss its limitations as posed by
Lagrangian intermittency, whose properties will be inves-
tigated in detail.

Richardson’s original description of relative dispersion
is based on a diffusion equation for the probability den-
sity function (pdf) of pair separation p"r, t# which in the
isotropic case can be written as

≠p"r, t#
≠t

!
1
r2

≠

≠r
r2K"r# ≠p"r, t#

≠r
. (1)

The turbulent eddy diffusivity was empirically established
by Richardson to follow the “four-thirds law” K"r# ~ r4$3.
This law is a direct consequence of the small-scale velocity
statistics, as was first recognized by Obukhov [9]. Thus,
for r within the inertial range, the dimensional analysis
gives

K"r# ! k0´1$3r4$3, (2)

where ´ is the mean energy dissipation and k0 a dimen-
sionless constant. We note that (2) relies on the connection
between the energy dissipation and the velocity correlation
functions in a well-developed turbulence, and that the par-
ticle dispersion is, of course, observed also in pseudoturbu-
lent synthetic Gaussian velocity fields [5,6,10] for which
the concept of energy dissipation is meaningless. Using
(2), the solution of (1) for d-distribution initial condition
has the well known form

p"r, t# !
A

"k0t#3´
exp

µ
2

9r2$3

4k0´1$3t

∂
, (3)

where A ! 2187$2240p3$2 is a normalizing factor. The
most important feature of the Richardson distribution (3) is
non-Gaussianity with a very pronounced peak at the origin
and fat tails. In the past, alternative distributions have been
proposed [11,12]. In particular, Batchelor [11] suggested
a Gaussian distribution as a consequence of a diffusivity
which depends only on averaged quantities. Because the
available data are scarce, there is still no general consensus
on the real form of pair separation pdf. Recent experimen-
tal works [3,4] are in favor of (3).

As a consequence of (1) and (2), Eq. (3) proposes that
the dispersion process is self-similar in time; i.e., the scal-
ing exponents of the moments of the separation

R2n"t# % &r2n"t#' ! C2n´nta2n (4)

have the values a2n ! 3n$2, as follows from dimensional
analysis. All the dimensionless coefficients C2n are given
in terms of k0 from (3) and a single number such as the
Richardson constant C2 (which can be readily measured)
is sufficient to parametrize turbulent dispersion. In what
follows we shall discuss to what extent this is the case.

The possibility to describe the dispersion process by
means of a diffusion equation is based on the physical as-
sumption that the velocity field is short correlated in time.
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We present a numerical study of two-particle dispersion from point sources in three-dimensional

incompressible homogeneous and isotropic turbulence at Reynolds number Re ’ 300. Tracer particles are
emitted in bunches from localized sources smaller than the Kolmogorov scale. We report the first

quantitative evidence, supported by an unprecedented statistics, of the deviations of relative dispersion

from Richardson’s picture. Deviations are due to extreme events of pairs separating much faster than

average, and of pairs remaining close for long time. The two classes of events are the fingerprints of

complete different physics, the former dominated by inertial subrange and large-scale fluctuations, and the

latter by dissipation subrange. A comparison of the relative separation in surrogate white-in-time velocity

field, with correct viscous-, inertial-, and integral-scale properties, allows us to assess the importance of

temporal correlations along tracer trajectories.
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The relative separation of pairs of fluid particles by turbu-
lence was first addressed by Richardson [1–3]. The main
question is simple and fundamental: given a pair of particles
released at time t0 and at a small separation r0 (smaller of the
Kolmogorov dissipative scale, !), what is the probability to
find them at a distance r at a later time t? In the case of
isotropic and homogeneous turbulence (HIT), the probability
density function (PDF) Pðr; tjr0; t0Þ of pair separation
depends on the amplitude of r only. Moreover, asymptoti-
cally it should become independent of the initial condition.
The knowledge of Pðr; tÞ is of utmost importance for many
studies, and it constitutes a highly nontrivial statistical prob-
lem. It is intrinsically nonstationary as it connects velocities
at particle positions, along their whole past history [4].
Richardson proposed to model particle separation in the
inertial range ! $ r $ L0 as a diffusive process with an
effective turbulent diffusivity, estimated empirically to fol-

low a 4=3 law:DRicðrÞ ¼ dhr2i
dt & "r4=3. Here L0 is the large

scale of theflowand" ¼ k0#
1=3, wherek0 is a dimensionless

constant and # the turbulent kinetic energy dissipation. It is
easy to connect Richardson’s work with Kolmogorov’s 1941
theory by means of the dimensional estimate [4,5],

DRicðrÞ & $ðrÞhð%rvÞ2i; (1)

where $ðrÞ & #!1=3r2=3 is the eddy turnover time at scale r
and hð%rvÞ2i ¼ C0#

2=3r2=3 is the second-order Eulerian lon-
gitudinal structure function. The resulting long-time growth
of the mean squared separation is

hr2ðtÞi ¼ g#t3; (2)

where g is the Richardson constant uniquely determined in
terms of k0 [6–9]. Many studies [8,10–13] have focused on
the subject, including extensions to the case of particles
with inertia [14,15]. Richardson’s picture definitely cap-
tures some important features of turbulent dispersion, e.g.,
concerning events with a typical separation of the order of
the mean. However, fundamental questions exist on the
possibility to correctly predict extremal events, i.e., pairs
with separation much larger or smaller than hr2ðtÞi1=2.
Richardson’s approach can be rephrased as the evolution
of tracers in a stochastic Gaussian, homogeneous, incom-
pressible, and isotropic velocity field,%-correlated in time,
with a two-point longitudinal correlation DkðrÞ [16].
Under this assumption, the evolution of Pðr; tÞ is closed
and local [4,16],

@tPðr; tÞ ¼ r!2@rr
2DkðrÞ@rPðr; tÞ: (3)

Whenever DkðrÞ ¼ D0r
&, this equation, with 0 ' &< 2

and Pðr; t0Þ / %ðr! r0Þ, can be solved analytically [17],
and provides the celebrated asymptotic large-time solution
(independent of r0),

PRicðr; tÞ /
r2

hr2ðtÞi3=2
exp

!
!b

"
r

hr2ðtÞi1=2
#
2!&

$
: (4)

Here b is a constant, uniquely determined by D0 [17]. In
such idealized scaling scenarios, tracer pairs separate in an
explosive way, forgetting their initial separation hr2ðtÞi /
t2=ð2!&Þ, which reproduces Richardson’s expression for
& ¼ 4=3.

PRL 109, 144501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

5 OCTOBER 2012

0031-9007=12=109(14)=144501(5) 144501-1 ! 2012 American Physical Society

Spontaneous Stochasticity in the Presence of Intermittency
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Spontaneous stochasticity is a modern paradigm for turbulent transport at infinite Reynolds numbers. It
suggests that tracer particles advected by rough turbulent flows and subject to additional thermal noise,
remain nondeterministic in the limit where the random input, namely, the thermal noise, vanishes. Here, we
investigate the fate of spontaneous stochasticity in the presence of spatial intermittency, with multifractal
scaling of the lognormal type, as usually encountered in turbulence studies. In principle, multifractality
enhances the underlying roughness, and should also favor the spontaneous stochasticity. This letter exhibits
a case with a less intuitive interplay between spontaneous stochasticity and spatial intermittency. We
specifically address Lagrangian transport in unidimensional multifractal random flows, obtained by
decorating rough Markovian monofractal Gaussian fields with frozen-in-time Gaussian multiplicative
chaos. Combining systematic Monte Carlo simulations and formal stochastic calculations, we evidence a
transition between spontaneously stochastic and deterministic behaviors when increasing the level of
intermittency. While its key ingredient in the Gaussian setting, roughness here surprisingly conspires
against the spontaneous stochasticity of trajectories.
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Introduction.—When transported by a sufficiently tur-
bulent flow, puffs of fluid particles are known to undergo a
phase of algebraic inflation R ∼ t3=2, independent from
their initial size and now known as Richardson diffusion
[1–10]. Beyond the specific exponent, Richardson’s law
suggests that turbulent transport requires some probabilistic
modeling: The modern interpretation uses the phenomenon
of spontaneous stochasticity [11–16], which involves
tracers as fluid particles advected by the fluid and subject
to additional thermal noise of amplitude κ [17]: In the
vanishing viscosity limit, the multiscale nature of turbulent
flows amplifies thermal noise in such a drastic fashion that
initially coinciding particles may separate in finite time
although their dynamics formally solve the same initial
value problem [18–20], hereby suggesting intrinsic nature
for the underlying randomness.
To date, the scenario of spontaneous stochasticity for

Lagrangian separation is fully substantiated within the
theory of Kraichnan flows. Kraichnan flows are minimal
random ersatzes of homogeneous isotropic turbulent fields
[17,19,21–24]; they are defined as white-in-time Gaussian
random fields, whose spatial statistics are centered and
prescribed by two-point correlation functions with alge-
braic decay satisfying

CðξÞ
η ðrÞ ¼ 1 − jrjξ for η ≤ jrj ≪ 1; ð1Þ

and vanishing at large scales ≫ 1. η is a scale under which
the flow is smooth, analogous to so-called Kolmogorov

scale: The scales η ≤ jrj ≪ 1 define the so-called inertial
range in turbulence theory. The Hurst parameter ξ ∈$0; 2½
prescribes the roughness of the field, through inertial-range
scaling h½vðxþ rÞ − vðxÞ$2i ∼ rξ. In the limit η → 0, this
means that the lesser ξ, the rougher v. In this setting,
spontaneous stochasticity essentially means that some
random time accounting for the large-scaleOð1Þ dispersion
of a puff of tracers with initial sizeOðηÞ has probability 1 to
be finite in limits where η, κ jointly vanish. The limit
describes puffs initially coalescing to a point in prescribed
(quenched) space-time velocity realizations [4,20]. For
instance, explicitly considering the relative separation
Rðt; r0Þ ≔ X2ðt;x0 þ r0Þ −X1ðt;x0Þ between two tracers
initiated at x0;x0 þ r0, a natural separation time is

τ1ðη; κÞ ≔ inf
kr0k¼η

ftjkRðt; r0Þk ≥ 1g; ð2Þ

from which we interpret spontaneous stochasticity as the
property

P½τ1 < ∞$ → 1 as η; κ → 0: ð3Þ

Even at this essential level, the presence or the absence of
spontaneous stochasticity in Kraichnan flows depends on a
subtle interplay between four parameters: roughness, com-
pressibility, space dimension, reflection rules for colliding
trajectories. To highlight the effect of roughness, we focus
on the unidimensional space, hence prescribing unit
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Time scales of turbulent relative dispersion
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Tracers in a turbulent flow separate according to the celebrated t3/2 Richardson-Obukhov law, which is usually
explained by a scale-dependent effective diffusivity. Here, supported by state-of-the-art numerics, we revisit
this argument. The Lagrangian correlation time of velocity differences increases too quickly for validating this
approach, but acceleration differences decorrelate on dissipative time scales. Phenomenological arguments are
used to relate the behavior of separations to that of a “local energy dissipation,” defined as the average ratio
between the cube of the longitudinal velocity difference and the distance between the two tracers. This quantity
is shown to stabilize on short time scales and this results in an asymptotic diffusion ∝t1/2 of velocity differences.
The time of convergence to this regime is shown to be that of deviations from Batchelor’s initial ballistic regime,
given by a scale-dependent energy dissipation time rather than the usual turnover time. It is finally demonstrated
that the fluid flow intermittency should not affect this long-time behavior of the relative motion.
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Turbulence has the feature of strongly enhancing the
dispersion and mixing of the species it transports. It is known
since the work of Richardson [1] that tracer particles separate
in an explosive manner, ∝t3/2. While little doubt remains about
its validity in three-dimensional homogeneous isotropic turbu-
lence, observations of this law in numerics and experiments
are difficult, as they require a huge scale separation between
the dissipative lengths, the initial separation of tracers, the
observation range, and the integral scale of the flow [2,3].
Much effort has been devoted to test the universality of this
law, which was actually retrieved in various turbulent settings,
such as the two-dimensional inverse cascade [4], buoyancy-
driven flows [5], and magnetohydrodynamics [6]. At the
same time, breakthroughs on transport by time-uncorrelated
scale-invariant flows have strengthened the original idea of
Richardson that this law originates from the diffusion of tracer
separation in a scale-dependent environment [7]. As a result,
the physical mechanisms leading to the Richardson-Obukhov
t3/2 law are still rather poorly understood and many questions
remain open on the nature of subleading terms, the rate of
convergence, and on the effects of the intermittent nature of
turbulent velocity fluctuations [8,9].

Turbulent relative dispersion consists in understanding the
evolution of the separation δx(t) = X1(t) − X2(t) between
two tracers. Richardson’s argument can be reinterpreted
by assuming that the velocity difference δu(t) = u(X1,t) −
u(X2,t) has a short correlation time. This means that the
central-limit theorem applies and that, for sufficiently large
time scales,

dδx
dt

= δu # √
τL U(δx)ξ (t), (1)

where ξ is the standard three-dimensional white noise, UTU =
〈δu ⊗ δu〉 the Eulerian velocity difference correlation tensor,
and τL the Lagrangian correlation time of velocity differences
between pair separated by δx = |δx|. As stressed by Obukhov
[10], when assuming Kolmogorov 1941 scaling, τL ∼ δx2/3,
U ∼ δx1/3, and the Fokker-Planck equation associated to (1)
exactly corresponds to that derived by Richardson for the
probability density p(δx,t). It predicts in particular that the

squared distance 〈|δx(t)|2〉r0 averaged over all pairs that are
initially at a distance |δx(0)| = r0 has a long-time behavior
∝t3 that is independent of r0. This loss of memory on
the initial separation can only occur on time scales longer
than the correlation time τL(r0) ∼ r

2/3
0 of the initial velocity

difference. For times t ) τL(r0), one cannot make use of the
approximation (1) as the velocity difference almost keeps
its initial value. This corresponds to the ballistic regime
〈|δx(t) − δx(0)|2〉r0 # t2S2(r0), where S2(r) = 〈|δu|2〉 is the
Eulerian second-order structure function over a separation r ,
introduced by Batchelor [11]. The diffusive approach (1) can,
however, be modified to account for the ballistic regime [12].
Nevertheless a short-time correlation of velocity differences
can be hardly justified from first principles and seems to
contradict turbulence phenomenology. Indeed, as stressed in
Ref. [7], if δx grows as t3/2, the Lagrangian correlation time
τL is of the order of δx2/3 ∼ t , so that the velocity difference
correlation time is always of the order of the observation
time. Relative dispersion strongly depends on flow time
correlations as evidenced in Ref. [13]. Despite such apparent
contradictions, the Richardson diffusive approach is relevant
to describe some intermediate regime valid for large enough
times and typical separations. Several measurements show that
the separations distribute with a probability that is fairly close
to that obtained from an eddy-diffusivity approach [9,14,15].

To clarify when and where Richardson’s approach might
be valid, it is important to understand the time scale of
convergence to the explosive t3 law. Recently, much work
has been devoted to this issue: It was, for instance, proposed
to make use of fractional diffusion with memory [16], to
introduce random delay times of convergence to Richardson
scaling [17], or to estimate the influence of extreme events
in particle separation [18]. All these approaches consider as
granted that the final behavior of separations is diffusive. As we
will see here, many aspects of the convergence to Richardson’s
law for pair dispersion can be clarified in terms of a diffusive
behavior of the velocity differences.

To address such issues, we make use of direct numerical
simulations. For this, the Navier-Stokes equation with a
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The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario
is proposed, in which pairs of tracers undergo a succession of independent ballistic
separations during time intervals whose lengths fluctuate. This approach suggests that
the logarithm of the distance between tracers self-averages and performs a continuous-
time random walk. This leads to specific predictions for the probability distribution of
separations, which differ from those obtained using scale-dependent eddy-diffusivity
models (e.g. in the framework of Richardson’s approach). These predictions are tested
against high-resolution simulations and shed new light on the explosive separation
between tracers.

Key words: mixing, turbulent flows, turbulent mixing

1. Introduction

Tracers in a turbulent flow separate in an explosive manner. Their averaged square
distance becomes independent of their initial separation and grows as t3 at large times.
This explains the ability of turbulence to considerably enhance mixing (Dimotakis
2005), but also links to fundamental issues in turbulence, where a key question
is to relate the irregularity of the Lagrangian flow with the persistence of a finite
dissipation at infinite Reynolds number (Cardy, Falkovich & Gawedzki 2008; Eyink
& Drivas 2014). Since the first prediction of the t3 law by Richardson (1926) and
its interpretation in terms of Kolmogorov’s similarity hypothesis by Obukhov (1941),
precise experimental and numerical measurements and accurate modelling of pair
separation have proven to be a particularly laborious exercise, as stressed for instance
in the reviews by Sawford (2001) and Salazar & Collins (2009).

A difficulty in observing the explosive law stems from the huge separation of time
scales that it requires. Batchelor (1950) indeed showed that the t3 law is preceded by
a ballistic regime during which the mean-square separation is /t2. This dominates
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The statistics of Lagrangian pair dispersion in a homogeneous isotropic flow is inves-
tigated by means of direct numerical simulations. The focus is on deviations from the
Richardson eddy-diffusivity model and in particular on the strong fluctuations expe-
rienced by tracers. Evidence is obtained that the distribution of distances attains an
almost self-similar regime characterized by a very weak intermittency. The timescale
of convergence to this behavior is found to be given by the kinetic energy dissipation
time measured at the scale of the initial separation. Conversely the velocity differences
between tracers are displaying a strongly anomalous behavior whose scaling properties
are very close to that of Lagrangian structure functions. These violent fluctuations are
interpreted geometrically and are shown to be responsible for a long-term memory
of the initial separation. Despite this strong intermittency, it is found that the mixed
moment defined by the ratio between the cube of the longitudinal velocity difference
and the distance attains a statistically stationary regime on very short timescales. These
results are brought together to address the question of violent events in the distribution
of distances. It is found that distances much larger than the average are reached by
pairs that have always separated faster since the initial time. They contribute a stretched
exponential behavior in the large-value tail of the inter-tracer distance probability dis-
tribution. At large times this tail is found to be closer to a pure exponential than to the
form obtained from the Richardson diffusive approach. At the same time, the distance
distribution displays a time-dependent power-law behavior at very small values, which
is interpreted in terms of fractal geometry. It is argued and demonstrated numerically
that the exponent converges to one at large time, again in conflict with Richardson’s
distribution.

Keywords: turbulent transport; relative dispersion

1. Introduction

It is known since Taylor’s seminal work [1] that tracers transported by a turbulent flow
approach a diffuse behavior on time scales much longer than the Lagrangian correlation
time of the flow. These ideas are now commonly used in applications, as for instance in air
quality control, to model effective mixing properties in terms of an eddy diffusivity. Such
models give a good handle on long-term averages and are successfully used to determine, for
instance, possible health hazards linked to a long exposure downstream a pollutant source.
However, they are unable to capture strong local fluctuations stemming from the complex
structure of the turbulent flow. Such events cannot be directly predicted from the averaged
concentration field as they relate to higher-order moments. Accessing these fluctuations
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FIG. 2. Mean-squared relative displacement as a function of forward time (solid lines, in red) and backward time (dashed
lines, in blue) at R� 140 (left) and 1000 (right), scaled by Kolmogorov variables, for di↵erent initial separations. Arrows
indicate direction of increasing r̃0, in logarithmically spaced intervals: r̃0/⌘ = 1/4, 1, 4, 16, 64, 256, and 1024 for R� 140;
r̃0/⌘ = 1, 4, 16, 64, 256, 1024, and 4096 for R� 1000. (Results at r̃0/⌘ = 1/4 for R� 1000 are not shown since they are not
well sampled.)

(as noted in Sec. II), it is easily shown that hr2/3
0 i = 1.31r̃2/3

0 . If r̃0 is in the inertial sub-range and
intermittency corrections are neglected, the multiplicative factor in the first part of Eq. (5) can also
be replaced by (11C2/3)✏2/3hr2/3

0 i where C2, the Kolmogorov constant in DLL(·), is close to 2.13 if
the Reynolds number is su�ciently high.19,32 Both the ballistic and di↵usive regimes are kinematic
in nature, since their attainment (or otherwise) is determined, respectively, by how small a time
step is used in collecting the data and how long the numerical simulation is in physical time units,
with no requirement for high Reynolds number. In contrast, dispersion characteristics at interme-
diate (inertial) times are dependent on the range of physical time scales present, and hence on the
Reynolds number of the flow. The form of the condition in the second line of Eq. (5) also allows for
the fact that particle pairs beginning in bins with r̃0 ⌧ ⌘ can still reach the inertial sub-range and
Richardson scaling behavior at su�ciently large times and su�ciently large Reynolds numbers.

Figure 2 shows data on the mean-squared relative displacement, normalized by Kolmogorov
variables, at the lowest and highest Reynolds numbers in this work. At early times, h|r(t) � r(0)|2i
increases quadratically with slope 2 on log-log plots as expected for the ballistic regime. In this
regime, particle-pair statistics are determined by the Eulerian properties, which are (with the pro-
viso of statistical stationarity) the same for forward and backward dispersion, as observed. Lines for
the largest values of r̃0 are very close to each other since the Eulerian structure functions approach
constant values at large r . At later times, especially for t � TL we observe that the dependence
on r̃0 also becomes weak, and all the curves shown ultimately converge towards a di↵usive regime
where the growth of mean-squared separation is linear. This approach towards the di↵usive limit
is clearest for the R� 140 simulation which was relatively long (T ⇡ 10 TL) but less so for the R�

1000 simulation which was carried out only for T ⇡ 2.5 TL. A closer examination does show that
backward dispersion approaches slope unity faster than forward dispersion.

At intermediate times, when most pairs are at some intermediate distance apart beyond the
viscous sub-range, turbulent dispersion is expected to be strongly influenced by inertial e↵ects,
which appear in the Navier-Stokes equations as nonlinear terms that, through the transfer of energy
from large to small scales, imply non-reversibility in time. Significant di↵erences between forward
and backward dispersion are thus expected.13,16 These di↵erences also imply that the Richardson
constant g will have di↵erent values in the forward and backward reference frames.

To focus on the inertial sub-range behavior, in Fig. 3 we show plots for the compensated
mean-square relative displacement

D
(r(t) � r0)2

E
/
�
✏t3� as a function of time scaled by the Batchelor

time scale t/t0 for a range of initial separations and Reynolds numbers. We see that for each value of
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shape of the backwards PDF is a strong function of C0 for
both models. At C0=4, the backwards PDF for Kurbanmu-
radov’s model has a peak at around r=!r and is more nearly
symmetrical, having only a weak negative skewness. For
C0=7 it is bimodal, with a sharp peak at r=0.2!r and a broad
peak around r=1.2!r. By C0=10 this broad peak has disap-
peared and the PDF is beginning to converge towards the
diffusion limit, less rapidly than in the forward case. The
backwards PDF for the quadratic model shows a similar
trend, although the quantitative differences between Figs.
3!a"–3!c" and Figs. 3!d"–3!f" reflect the sensitivity of back-
wards dispersion to the higher-order details of the Eulerian
velocity PDF.

B. DNS

In Fig. 4 we compare backwards and forwards calcula-
tions for the mean-square separation of pairs of fluid par-
ticles for a range of initial separations r0 /"=0.25, 1, 4, and
16. Although the Reynolds number is too low to exhibit an

inertial subrange, there is clearly a range of intermediate
times t"# t#TL, where t"= !$ /%"1/2 is the Kolmogorov time
scale and TL is the Lagrangian integral time scale, for which
backwards relative dispersion is larger than the forwards
quantity. The difference is greatest for r0 /"=0.25 and de-
creases systematically with increasing initial separation.
Backwards and forwards dispersion are equal at very small
times, where the ballistic limit

#r2$ − r0
2 = %#&&

2!r0"$ + 2#&!
2 !r0"$'t2 ( 1

3r0
2!t/t""2, !r0 # ""

!28"

holds, and in the large-time diffusive limit where #r2$−r0
2

=12!u
2TLt. For r0 /"=1, the backwards dispersion is about

four times larger than the forwards dispersion at t / t"=10.
This is a little smaller than, but comparable with, the differ-
ences observed in the Q1D models.

Figure 5 shows the backwards and forwards separation
PDFs for r0 /"=1 and a range of times. Again we emphasize
that at this low Reynolds number there is no inertial sub-
range, and the DNS results are strongly influenced by dissi-
pation subrange effects. Nevertheless, it is clear that there are
significant differences between the backwards and forwards
PDFs at the times t / t"=5.2 and 20.5, which are intermediate
between the small-time ballistic limit and the large-time dif-
fusive limit. The DNS results for the backwards PDFs, how-
ever, do not show the peak at large separations evident in the
model results for C0=4 and 7, but are more similar to the
model results for C0=10, where the backwards PDF peaks at
lower separations than the forwards PDF.

For high Reynolds number turbulence C0(7, but finite
Reynolds number effects can be accommodated well in
single-particle Lagrangian models30 using lower effective
values of C0. The correspondence here between the Lagrang-
ian relative dispersion models using a higher value of C0,
and DNS is thus at first sight inconsistent with single-particle

FIG. 4. Forwards relative dispersion !solid lines" and backwards relative
dispersion !dashed lines" for initial separations r0 /"= 1

4 , 1, 4, and 16 as
labeled for DNS calculations at Re'=38.

FIG. 5. Forwards !solid line" and
backwards !dashed line" separation
PDFs for DNS calculations at Re'

=38 at times indicated. The initial
separation is r0 /"=1.
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grangian particle tracking with sampling rates exceeding
20 frames per Kolmogorov time scale, ⌧⌘ [20, 21]. We
obtained three data sets at R� = 270, 350 and 690, with
corresponding Kolmogorov scales ⌘ = 105 µm, 66 µm,
and 30 µm and ⌧⌘ = 11.1 ms, 4.3 ms, and 0.90 ms, re-
spectively. The integral length scales of L ⇡ 5.5 cm for
the first two and L ⇡ 7.0 cm for the last data set are
both smaller than the size of the measurement volume,
which is approximately (8 cm)3. Many independent, one-
second recordings of ⇠ 100 particles where combined to
generate su�cient statistics. For example, the R� = 690
dataset contains 555,479 particle trajectories lasting at
least 20⌧⌘. Our experimental results are compared to
DNS data obtained from pseudo-spectral codes [22–24].

To study the dispersion between two particles, it is
more convenient to analyze the change in separation,
�R(t) = R(t) � R(0), than the separation R(t) it-
self [4, 19, 25]. We expand �R(t) in a Taylor series and
average over many particle pairs with a fixed initial sep-
aration |R(0)| = R0 to obtain

h�R(t)2i

R2
0

=
hu(0)2i

R2
0

t2 +
hu(0) ·a(0)i

R2
0

t3 +O(t4), (3)

where u(0) and a(0) are the relative velocity and accel-
eration between the two particles at time t = 0. Using
Eq. (1) reduces the t3 term in Eq. (3) to �2(t/t0)3, where
t0 = (R2

0/✏)
1/3 is the (Kolmogorov) time scale character-

istic of the motion of eddies of size R0 [1]. Eq. (3) can
thus be expressed as

h�R(t)2i

R2
0

=
hu(0)2i

(✏R0)2/3

⇣ t

t0

⌘2
� 2

⇣ t

t0

⌘3
+O(t4). (4)

For short times, the dominant behavior is given by the t2

term in Eq. (4) [25], which is even in t, and thus reveals
no asymmetry in time. The odd t3 term is the first to
break the t ! �t symmetry. This is better seen from the
di↵erence between the forward and backward dispersion,

h�R(�t)2 � �R(t)2i

R2
0

= �2
hu(0) ·a(0)i

R2
0

t3 +O(t5)

= 4(t/t0)
3 +O(t5), (5)

which is equivalent to Eq. (2). We note that the sim-
ple form of Eq. (4), which suggests that the evolution
of h�R2(t)i depends on (t/t0) alone, is accurate only up
to O(t/t0)3. Not all higher-order terms in the Taylor
expansion can be reduced to functions of (t/t0) [26].

To test Eq. (5), we identified particle pairs from our
large set of experimental and numerical trajectories with
a given initial separation R0 and studied the evolution of
�R(t)2, both forwards and backwards in time. One of the
di�culties of reliably measuring h�R(t)2i in experiments
comes from the finite size of the measurement volume in
which particles are tracked. The residence time of parti-
cle pairs in the measurement volume decreases with the

10�3 10�2 10�1 100 101

t/t0

0.0

1.0

2.0

3.0

4.0

5.0

h
dR

2 (
�

t)
�

dR
2 (

t)
i
/[
�

1 2
h
u(

0)
·

a(
0)
i
t3 ]

Rl = 690
Rl = 350
Rl = 270
Rl = 300, DNS

FIG. 1. (color online). The di↵erence between the backward
and forward mean squared relative separation, h�R(�t)2 �
�R(t)2i, compensated using Eq. (5). The symbols correspond
to experiments: circles for R� = 690 (R0/⌘ = 267, 333, 400),
stars for R� = 350 (R0/⌘ = 152, 182, 212), and squares for
R� = 270 (R0/⌘ = 95, 114, 133). The lines correspond to
DNS at R� = 300 (R0/⌘ = 19, 38, 58, 77, 92, 123).

separation velocity, inducing a bias [8, 27]. We analyze
how this a↵ects the results and show that the e↵ect is
weak [28]. The very good agreement between experi-
ments and DNS convinces us that the finite-volume bias
does not alter our results.
Fig. 1 shows the di↵erence, h�R2(�t)� �R2(t)i, com-

pensated by �
hu(0) · a(0)i

2R2
0

t3, using Eq. (5), obtained from

both experiments and DNS at 4 di↵erent Reynolds num-
bers. The DNS, R� = 300 data consisted of 32, 768 par-
ticle trajectories in a statistically stationary turbulent
flow [22] over ⇠ 4.5 large-eddy turnover times, allowing
particle pairs with a prescribed size to be followed for a
long period of time. The data all show a clear plateau
up to t ⇡ t0/10, in complete agreement with Eq. (5). At
longer times, both experimental and DNS data decrease
rapidly towards zero without any sign of the plateau ex-
pected from the Richardson prediction,

h�R(�t)2 � �R(t)2i

R2
0

= (gb � gf )
⇣ t

t0

⌘3
. (6)

While the slightly faster decay of the experimental data
for t >⇠ t0 could be due to a residual finite-volume bias,
this should not a↵ect the DNS data. Previous experi-
ments at R� = 172 with initial separations in the range
4  R0/⌘  28 suggested a value of the di↵erence of
(gb�gf ) = 0.6±0.1 [8]. Fig. 1 does not provide evidence
for this value, although it does not rule out the existence
of a plateau at a lower value of (gb�gf ). Note that Eq. (6)
predicts the time irreversibility caused by the energy flux
to persist into the inertial range and remarkably to grow

J Jucha et al.  PRL 113.5 (2014): 054501.
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Figure 6
Mean square separation distance versus time obtained from time-shifted float data during the TOPOGULF experiment: (a) western
floats and (b) eastern floats. r0 < 7.5 km for the 10-day (crosses) and 60-day (open diamonds) reinitialized time series. Asterisks give the
corresponding evolution for portions selected with the minimum separation criterion. This consists of finding the minimum separation
distance over the entire lifetime of the pair and recording the evolution for 120 days thereafter. The remaining record is then searched
for a new minimum and the process is repeated. Numbers of pairs are indicated within parentheses. αW and αE are numerical
coefficients, and KE (∞) and KW(∞) are the diffusion coefficients in the diffusive limit. Figure adapted from Ollitrault et al. 2005.

Ollitrault et al. (2005) analyzed a small subset of quasi-Lagrangian tracks from the
TOPOGULF experiment (Arhan et al. 1989, de Verdière et al. 1989). During TOPOGULF,
26 subsurface floats at the 700-dbar level were deployed in the mid-latitude range of the North
Atlantic, and their positions were tracked between 1983 and 1989. The subset of float data re-
vealed that for initial separations less than Rint = 25 km, there is evidence of an exponential regime
(t < 6 days), followed by a t3 regime from scales of 40 km to 300 km (20 to 60 days) after which
a linear t regime was observed (see Figure 6). This is consistent with a two-dimensional direct
enstrophy cascade at scales smaller than Rint and an inverse energy cascade at scales larger than Rint,
although the authors note that there are other possible explanations for these trends, and because
the plots were constructed under the assumption of an R-O regime (by performing the appro-
priate time shift), they cannot prove its existence. Particle-separation PDFs were also computed.
For initially close pairs, the PDFs are non-Gaussian, whereas for initially distant pairs, there is
stronger resemblance to a Gaussian PDF, in agreement with an earlier surface-drifter experiment
off the northern California coast (Davis 1985a,b).

4. DISCUSSION
Despite the insightful beginning provided by the classic papers, there remain serious questions
about the dispersion of particle pairs in turbulence. This is, in no small part, due to the many
challenges faced by experimentalists and numerical simulators in making measurements that can
accurately and reproducibly test the theory. Early experiments in the environment have shown
the strongest evidence of the R-O regime; however, there are a number of important caveats. The
data often have significant scatter, which may be attributable to spatial inhomogeneities in the
turbulence parameters and/or measurement errors. Vertical and horizontal mean shear (Bowden
1965; Csanady 1969; Kullenberg 1972; Randerson 1972; Saffman 1962a,b; Young et al. 1982)
that may enhance dispersion is often not measured. This effect may even dominate turbulent
dispersion under the conditions Ri ∼ 1 and ST # 1, where Ri is the Richardson number, S is
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 Richardson diffusion: why so difficult?
Which are the difficulties in studying Lagrangian dispersion ? 


1 need to accurately know the spatial statistics of the flow velocity along 
Lagrangian paths high-resolution, high frequency 

2 need scale separation to disentangle different dispersion regimes:  
exponential, ballistic, turbulent,.. 

3 need to have high statistical accuracy : long records along  many Lagrangian 
paths 
4 need to limit the impact of inhomogeneities (walls, borders),  unsteadiness, 
anisotropies, stratification 


Finite Re effects are very severe Persistency of correlations

diffusive pair dispersion regime6,8

hl2i= g ϵ t3, ð6Þ

where g is the Richardson constant. We also make use of the fact that
there are two theoretical predictions for the probability density func-
tion (PDF) of l in the inertial range1,6,8,13. In both theories, the average

separation is equal to hli=b
ffiffiffiffiffiffiffiffi
hl2i

q
, where b =0.867 ± 0.054 is a

dimensionless constant (see Section 4.2). Combining this with Eq. (6)

we obtain d lh i
dt = 3

2 b ðgϵtÞ
1=2. Notably, Richardson’s solution is strictly

valid only for l0 = 0, and thus the variance of l in Eq. (6) is usually

replaced with the variance of (l − l0)6. Yet, since
d lh i
dt = d l#l0h i

dt , and since
the PDF of l − l0 was experimentally observed to agree with the theo-
retical expressions used here for the PDF of l6,13, our calculation applies
also for finite l0. The second factor, ∣Δv∣h i, is the first order Eulerian-
Lagrangian absolute structure function, where the relative velocities
are taken over the full distribution of particle distances which changes
with time. At t = 0, the structure function is purely Eulerian, so
according to the Kolmogorov theory24 (namely, neglecting intermit-

tency corrections), ∣Δv∣ ∣ t =0h i=
"
∣Δl0v∣

#
=C1ðϵl0Þ

1=3, where C1 is a
universal constant of turbulence. At longer times, the mixed structure
function is calculated by averaging the particles’ relative velocities
across the distribution of particle distances, l; in the inertial range we

obtain ∣Δv∣h i= c C1 ϵ
ffiffiffiffiffiffiffiffiffi"
l2
#q$ %1=3

, where c =0.918 ± 0.034 is a dimen-

sionless constant (see Section 4.3). Combining these estimations and
using Eq. (6) we obtain the following first order, mean-field
approximation, for the angle cosine in the inertial range of turbulence

αh i=a
g1=3

C1
, ð7Þ

where a $ 3b
2c = 1:42±0:10.

Equation (7) connects αh i with Richardson’s law in the inertial
range, and it has several important implications. First, our calculations
suggest that αh i in the super-diffusive regime is constant. This is in
agreement with the dimensional analysis argument presented above,

which is expected as eq. (6) can also be derived from a similar
argument4. Indeed, the valueof αh i obtainedhere does not dependon ϵ
nor on the initial conditions, so it is a universal constant of turbulence.
The value of αh i can be calculated with eq. (7) for the small initial
separations for which Richardson’s theory holds, and then, assuming
that αh i is independent on l0, the same value should hold for the entire
inertial range (this is verified in Section 2.2). Second, because of the
geometrical constraint ∣α∣≤ 1, and since all the constants in eq. (7) are
positive,weobtain a constraint for the valueof theRichardson constant

g ≤
C1

a

$ %3

: ð8Þ

Third, if one measures θ
" #

from empirical data, the value of g can
be readily calculated.

Universality of the pair dispersion angle
The angle θ can bemeasured from the trajectories of flow tracers, and
thus, its behavior can be tested using empirical data directly. To this
end, we used two independent datasets. The first is the Johns Hopkins
Turbulence Database (JHTDB), which holds turbulent flow fields taken
from a direct numerical simulation (DNS) of a forced homogeneous
isotropic turbulence at a Taylor microscale Reynolds number of
Reλ ≈ 433, with the ability to integrate Lagrangian trajectories25,26. Since
its publication, this database has become a gold standard and a
hypothesis-testing tool for turbulent flows. The second data set was
taken from 3D particle tracking measurements27,28 of quasi-
homogeneous isotropic turbulence that we conducted inside a stir-
red water tank at ETH Zürich (Fig. 2a and Supplementary Video 2, the
data is available in ref. 29). The flow had secondary circulation with an
amplitude of about 68% of the root mean squared turbulent fluctua-
tions. The turbulence integral length scale, L = 20.5mm,was calculated
by fitting an exponential function to the longitudinal velocity auto-
correlation function (Fig. 2g), where a Kolmogorov scaling range was
observed between approximately 1 and 5 mm for the Eulerian second
order structure function (Fig. 2f). The Reynolds number was Reλ ≈ 188.
Detailed information about both data sets are given in Section 4.

We begin by evaluating the error that results from truncating the
Taylor series in eq. (5). The ratio between αh i and its first order

Fig. 3 | Evolution of the pair dispersion angle. a Evolution of the average angle
between the separation and the relative velocity vectors as a function of time.
Continuous lines show DNS results for various ensembles grouped by the initial
separation distance for values in the inertial range; the bin edges used to form the
ensembles are l0/η =0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 130, 160, and 200,
where the arrow runs from lower to higher values. Lines in the inset show the same
data plotted with time normalized by the Batchelor timescale. Circles correspond
to the experimental results, averagedover all pairswith r0 < 70ηwith anuncertainty

of ± 2∘ based on the data range across the l0 groups (Fig. S3). The dot-dashed line
correspond to eq. (9). The dashed black line and the shaded region mark the
estimated value of θ

" #
= 59:3 ± 2%. b Evolution of the average of θ for pairs with

initial separation outside the inertial range. Data are shown for initial separation
distances of l0/η = 483, 594, 704, 812, 915, and 1006. These values correspond to l0/
L = 1.00, 1.24, 1.47, 1.69, 1.91, and 2.10. The horizontal dashed line marks the
θ
" #

= 59:3% value, and the vertical dashed line marks one integral timescale.

Article https://doi.org/10.1038/s41467-023-39903-6
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Breakdown of the Lagrangian flow
if f is continuous with the Lipschitz condition

(essentially if f is differentiable)

The solution exists and is unique

<latexit sha1_base64="2CPJxElzTuaPHKz9jXN7MRygR84="></latexit>

�x(t) = x0(t)� x(t)
<latexit sha1_base64="T2BmCR7HqSHLeAysyQ4WTJktxhM="></latexit>

�x(0) = x0(0)� x(0) = "
in the presence of chaos
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|�x(t)| = ✏e�1t yet
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lim
✏!0

|�x(t)| = 0
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dx

dt
= f(x) +

p
2D0⌘(t)
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p(x, s) = �(x� y)
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p(x, t|y, s) = �(x� x(t;y, s))

be f a smooth velocity field
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form a genuinely stochastic process already in a fixed velocity realization, as predicted above
and illustrated in the figure below:

That Markov process, may be obtained by first adding the regularizing noise to the trajec-
tory equation, as in (1.4), and then turning it off, or also directly, by the Le Jan-Raimond
construction of the κ = 0 transition probabilities P (v|t,x; s, dy).

4.2. The role of compressibility

Up to now, we have considered the Kraichnan ensemble with incompressible velocities, the
property guaranteed by the presence of the transverse projector (δij − kikj

k2 ) in the Fourier rep-
resentation (2.2) of the velocity 2-point function. In order to study the effects of compressibility,
one may introduce another parameter besides the roughness exponent ξ, the compressibility de-
gree ℘. We shall do it by replacing the transverse projector in (2.2) by [(1−℘)δij+(℘d−1)k

ikj

k2 ].
The value ℘ = 0 corresponds to the incompressible case whereas for ℘ = 1 almost all veloci-
ties are gradients, with the intermediate values of ℘ interpolating between the two cases. The
preceding constructions, in particular the Le Jan-Raimond one, carry over to the case with
non-zero ℘. The scaling form of the generator of the 2-particle dispersion process becomes
now

M !=0
2 = D2(d− 1) ρξ−a∂ρ ρ

a∂ρ (4.6)

with a = d+ξ
1+℘ξ − 1. The definition of the semigroup e tM!=0

2 requires a choice of the boundary
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Breakdown of the Lagrangian flow

We shall come back to this explosive separation when discussing the transport of substances in turbulent flows



A clean framework for (not only) Richardson dispersion 

Having listed different subdiffusive and superdiffusive
cases, from now on we shall be interested in random
turbulent flows with finite Lagrangian correlation times,
which are experimentally known to occur for sufficiently
high Reynolds numbers (Pope, 1994). For the long-time
description of the diffusion in such flows, it is useful to
consider the extreme case of random homogeneous and
stationary Eulerian velocities with a short correlation
time. The formal way to get these processes is to change
the time scale by taking the scaling limit
lim!→"!1/2v(r,!t), i.e., considering the process as
viewed in a sped-up film. We assume that the connected
correlation functions2 decay fast enough when time dif-
ferences increase. The elementary consequences of
those assumptions are the existence of the long-time
asymptotic limit and the fact that it is governed by the
central limit theorem. When !→" , we recover a veloc-
ity field which is Gaussian and white in time, character-
ized by the two-point function

#v i$r,t %v j$r!,t!%&!2'$ t"t!%Dij$r"r!%. (10)

The advection by such velocity fields was first consid-
ered by Kraichnan (1968) and it is common to call the
Gaussian ensemble of velocities with two-point function
(10) the Kraichnan ensemble. For the Kraichnan en-
semble, the Lagrangian velocity V(t) has the same
white-noise temporal statistics as the Eulerian one v(r,t)
for fixed r and the displacement along a Lagrangian tra-
jectory (R(t) is a Brownian motion for all times. The
eddy diffusivity tensor is De

ij!Dij(0), which is a special
case of relation (9). In the presence of molecular diffu-
sion, the overall diffusivity is the sum of the eddy con-
tribution and the molecular value )' ij.

In realistic turbulent flows, the Lagrangian correlation
time * is comparable to the characteristic time scale of
large eddies. Progress in numerical simulations (Yeung,
1997) and experimental technique (Voth et al., 1998; La
Porta et al., 2001; Mordant et al., 2001) has provided in-
formation on the single-particle statistics in the regime
intermediate between ballistic and diffusive. Such be-
havior is captured by the the subtracted Lagrangian au-
tocorrelation function #V(0)+V(0)"V(t),& or its sec-
ond time derivative that is the autocorrelation function
of the Lagrangian acceleration. This information has
provided stringent tests on simple stochastic models
(that eliminate velocity fields), often used in the past to
describe the one-particle and two-particle statistics in
turbulent flows (Pope, 1994). The Kraichnan ensemble
that models stochastic velocity fields certainly misrepre-
sents the single-particle statistics by suppressing the re-
gime of times smaller than *. It constitutes, however, as
we shall see in the sequel, an important theoretical labo-
ratory for studying the multiparticle statistics in fluid tur-
bulence.

B. Two-particle dispersion in a smooth velocity

The separation R12!R1"R2 between two fluid par-
ticles with trajectories Rn(t)!R(t ;rn) passing at t!0
through the points rn satisfies (in the absence of Brown-
ian motion) the equation

Ṙ12!v$R1 ,t %"v$R2 ,t %. (11)

We consider first an incompressible flow where the par-
ticles generally separate. In this subsection, we start
from the smallest distances where the velocity field can
be considered spatially smooth due to viscous effects. In
next subsection (Sec. II.C), we treat the dispersion prob-
lem for larger distances (in the inertial interval of turbu-
lence) where the velocity field has a nontrivial scaling.
Finally, we describe a compressible flow and show how
the separation among the particles is replaced by their
clustering as the degree of compressibility grows.

1. General considerations

In smooth velocities, for separations R12 much smaller
than the viscous scale of turbulence, i.e., in the so-called
Batchelor regime (Batchelor, 1959), we may approxi-
mate v(R1 ,t)"v(R2 ,t)-.(t)R12(t) with the Lagrang-
ian strain matrix . ij(t)!/ jv i+R2(t),t, . In this regime,
the separation obeys the ordinary differential equation

Ṙ12$ t %!.$ t %R12$ t %, (12)

leading to the linear propagation

R12$ t %!W$ t %R12$0 %, (13)

where the evolution matrix is defined as Wij(t)
!0Ri(r;t)/0rj with r!r2 . We shall also use the notation
W(t ;r) when we wish to keep track of the initial point or
W(t ;r,s) if the initial time s is different from zero.

Equation (12), with the strain treated as given, may be
explicitly solved for arbitrary .(t) only in the 1D case
by expressing W(t) as the exponential of the time-
integrated strain:

ln+R$ t %/R$0 %,!ln W$ t %!!
0

t
.$s %ds1X . (14)

We have omitted subscripts replacing R12 by R. When t
is much larger than the correlation time * of the strain,
the variable X behaves as a sum of many independent
equally distributed random numbers X!21

Nyi with N
3t/* . Its mean value #X&!N#y& grows linearly in time.
Its fluctuations X"#X& on the scale O(t1/2) are gov-
erned by the central limit theorem that states that (X
"#X&)/N1/2 becomes for large N a Gaussian random
variable with variance #y2&"#y&21( . Finally, its fluctua-
tions on the larger scale O(t) are governed by the large
deviation theorem that states that the PDF of X has
asymptotically the form

P$X %3e"NH(X/N"#y&). (15)

This is an easy consequence of the exponential depen-
dence on N of the generating function #ezX& of the mo-
ments of X . Indeed, #ezX&!eNS(z), where we have de-

2The connected correlation functions, also called cumulants,
are recursively defined by the relation #v1¯vn&
!2456786##v56(1) , . . . ,v56(n6)&& with the sum over the parti-
tions of 41, . . . ,n7.
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The Kraichnan model (R. H. Kraichnan, PoF 11,11, 945 (1968))).
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v(r, t) zero mean Gaussian velocity field with correlation

sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→! and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim "→0"#!“v!2$%0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform

D̂ij&k'(" ) ij!
kikj

k2 # e!(*k)2

&k2"L!2'(d"+)/2 , (46)

with 0,+,2. In physical space,

Dij&r'#D0) ij!
1
2

dij&r', (47)

where dij(r) scales as r+ in the inertial interval *$r
$L , as r2 in the viscous range r$* and tends to 2D0) ij

at very large scales r%L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D0#O(L+) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits *→0 and L→! , it takes
the scaling form

lim
*→0
L→!

dij&r'#D1r+" &d!1"+') ij!+
rirj

r2 # , (48)

where the normalization constant D1 has the dimension-
ality of (length2!+)&(time!1).

For 0'+'2 and *(0, the typical velocities are
smooth in space with the scaling behavior r+ visible only
for scales much larger than the viscous cutoff *. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent +/2!0. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case +#2 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.
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sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→! and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim "→0"#!“v!2$%0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform

D̂ij&k'(" ) ij!
kikj

k2 # e!(*k)2
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with 0,+,2. In physical space,
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where dij(r) scales as r+ in the inertial interval *$r
$L , as r2 in the viscous range r$* and tends to 2D0) ij

at very large scales r%L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D0#O(L+) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits *→0 and L→! , it takes
the scaling form

lim
*→0
L→!

dij&r'#D1r+" &d!1"+') ij!+
rirj

r2 # , (48)

where the normalization constant D1 has the dimension-
ality of (length2!+)&(time!1).

For 0'+'2 and *(0, the typical velocities are
smooth in space with the scaling behavior r+ visible only
for scales much larger than the viscous cutoff *. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent +/2!0. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case +#2 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.
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sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→! and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim "→0"#!“v!2$%0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform
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where dij(r) scales as r+ in the inertial interval *$r
$L , as r2 in the viscous range r$* and tends to 2D0) ij

at very large scales r%L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D0#O(L+) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits *→0 and L→! , it takes
the scaling form

lim
*→0
L→!

dij&r'#D1r+" &d!1"+') ij!+
rirj

r2 # , (48)

where the normalization constant D1 has the dimension-
ality of (length2!+)&(time!1).

For 0'+'2 and *(0, the typical velocities are
smooth in space with the scaling behavior r+ visible only
for scales much larger than the viscous cutoff *. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent +/2!0. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case +#2 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
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ṙ = v(r, t) +
p
2⌘

B. Shraiman & E. D. Siggia. Nature 405, 639 (2000) G. Falkovich, K. Gawȩdzki, M. Vergassola.  RMP 73, 913 (2001)

NB: is an incompressible ensemble of velocities  
<latexit sha1_base64="AY2M686NQUGFdm4twXuBq2odI60="></latexit>X

i

@rihvi(r, t)vj(r0, t0)i =
X

j

@r0j hv
i(r, t)vj(r0, t0)i = 0

<latexit sha1_base64="7/u2dkAjZILHrr6YWvGgkODAEGY="></latexit>X

i

@riD
ij(r � r0) =

X

j

@rjD
ij(r � r0) = 0

the delta correlation makes the dynamics of  particles reversible



A clean framework for (not only) Richardson dispersion 

B. Shraiman & E. D. Siggia. Nature 405, 639 (2000) G. Falkovich, K. Gawȩdzki, M. Vergassola.  RMP 73, 913 (2001)

relative motion  and  r = r1 − r2 R = R1 − R2

<latexit sha1_base64="ap1xl+F8kZCydIRfsn+q7eq4yk8="></latexit>

(@t �M)P(r;R, t) = �(t)�(R� r)

culable. We shall use a formal functional integral ap-
proach (Chertkov, 1997; Bernard et al., 1998). In the
phase space path integral representation of the solution
of Eq. (44),

p!r,s ;R,t!v"!"r(s)!r
r(t)!R

exp# ""
s

t
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&t , the Gaussian average over the velocities is easy

to perform. It replaces the exponent in Eq. (49) by
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t ( ip($)• ṙ($)$(D0$%)p2($))d$ and results in the
path-integral represention of the heat kernel of the La-
placian for which we shall use the operator notation
e !t#s!(D0$%)“2

(r;R). In other words, the average of Eq.
(49) is the solution of the heat equation (with diffusivity
D0$%) equal to ! (R#r) at time s . The above calcula-
tion confirms then the result discussed at the end of Sec.
II.A about the all-time diffusive behavior of a single
fluid particle in the Kraichnan ensemble.

In order to study the two-particle dispersion, one
should examine the joint PDF of the equal-time values
of two fluid particles averaged over the velocities
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The latter is given for the Kraichnan ensemble by the
heat kernel e !t#s!M2(r1 ,r2 ;R1 ,R2) of the elliptic second-
order differential operator
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In other words, the PDF P2 satisfies the equation (/ t
#M2)P2!0(t#s)0(R1#r1)0(R2#r2), a result which
goes back to the original work of Kraichnan (1968). In-
deed, the Gaussian expectation (50) is again easily com-
putable in view of the fact that the velocity enters
through the exponential function in Eq. (49). The result
is the path-integral expression
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for the heat kernel of M2 .
Let us concentrate on the relative separation R!R1

#R2 of two fluid particles at time t , given their separa-
tion r at time zero. The relevant PDF P̃(r;R;t) is ob-
tained by averaging over the simultaneous translations
of the final (or initial) positions of the particles. Explic-
itly, it is given by the heat kernel of the operator M̃
!(dij(r)$2%0 ij).ri.rj equal to the restriction of M2 to
the translationally invariant sector. Note that the eddy
diffusivity D0 , dominated by the integral scale, drops
out from M̃. The above result shows that the relative
motion of two fluid particles is an effective diffusion
with a distance-dependent diffusivity tensor scaling like
r2 in the inertial range. This is a precise realization of
the scenario for turbulent diffusion put up by Richard-
son (1926).

Similarly, the PDF of the distance R between two par-
ticles is given by the heat kernel e !t!M(r ;R), where M is
the restriction of M2 to the homogeneous and isotropic
sector. Explicitly,

M!
1
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in the scaling regime and its heat kernel may be readily
analyzed. In the Batchelor regime 2!2 and for %→0,
the heat kernel of M reproduces the lognormal distribu-
tion (23) with 3!2D1(d#1) and 4̄!D1d(d#1); see
Sec. II.B.2.a.

The simple criterion allowing us to decide whether the
Markov process stays diffused as %→0 is to control the

limit r→0 of the PDF P(r ;R ;t) (Bernard et al., 1998).
For smooth velocities, it follows from Eq. (23) that

lim
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In simple words, when the initial points converge, so do
the end points of the process. Conversely, for 052&2
we have
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in the scaling limit 7!0, L!8 . That confirms the dif-
fused character of the limiting process describing the La-
grangian trajectories in fixed non-Lipschitz velocities:
the end points of the process stay at finite distance even
if the initial points converge. If we set the viscous cutoff
to zero keeping L finite, the behavior (55) crosses over
for R(L to a simple diffusion with diffusivity 2D0 : at
such large distances the particle velocities are essentially
independent and the single-particle behavior is recov-
ered.

The stretched-exponential PDF (55) has the scaling
form (40) for 9!2#1 and implies the power-law growth
(39) of the averaged powers of the distance between
trajectories. The PDF is Gaussian in the rough case 2
!0. Note that the Richardson law *R2(t)+6t3 is repro-
duced for 2!4/3 and not for 2!2/3 (where the velocity
has the spatial Hölder exponent 1/3). The reason is that
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proach (Chertkov, 1997; Bernard et al., 1998). In the
phase space path integral representation of the solution
of Eq. (44),

p!r,s ;R,t!v"!"r(s)!r
r(t)!R

exp# ""
s

t
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D0$%) equal to ! (R#r) at time s . The above calcula-
tion confirms then the result discussed at the end of Sec.
II.A about the all-time diffusive behavior of a single
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In order to study the two-particle dispersion, one
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of two fluid particles averaged over the velocities
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In other words, the PDF P2 satisfies the equation (/ t
#M2)P2!0(t#s)0(R1#r1)0(R2#r2), a result which
goes back to the original work of Kraichnan (1968). In-
deed, the Gaussian expectation (50) is again easily com-
putable in view of the fact that the velocity enters
through the exponential function in Eq. (49). The result
is the path-integral expression
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for the heat kernel of M2 .
Let us concentrate on the relative separation R!R1

#R2 of two fluid particles at time t , given their separa-
tion r at time zero. The relevant PDF P̃(r;R;t) is ob-
tained by averaging over the simultaneous translations
of the final (or initial) positions of the particles. Explic-
itly, it is given by the heat kernel of the operator M̃
!(dij(r)$2%0 ij).ri.rj equal to the restriction of M2 to
the translationally invariant sector. Note that the eddy
diffusivity D0 , dominated by the integral scale, drops
out from M̃. The above result shows that the relative
motion of two fluid particles is an effective diffusion
with a distance-dependent diffusivity tensor scaling like
r2 in the inertial range. This is a precise realization of
the scenario for turbulent diffusion put up by Richard-
son (1926).

Similarly, the PDF of the distance R between two par-
ticles is given by the heat kernel e !t!M(r ;R), where M is
the restriction of M2 to the homogeneous and isotropic
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analyzed. In the Batchelor regime 2!2 and for %→0,
the heat kernel of M reproduces the lognormal distribu-
tion (23) with 3!2D1(d#1) and 4̄!D1d(d#1); see
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in the scaling limit 7!0, L!8 . That confirms the dif-
fused character of the limiting process describing the La-
grangian trajectories in fixed non-Lipschitz velocities:
the end points of the process stay at finite distance even
if the initial points converge. If we set the viscous cutoff
to zero keeping L finite, the behavior (55) crosses over
for R(L to a simple diffusion with diffusivity 2D0 : at
such large distances the particle velocities are essentially
independent and the single-particle behavior is recov-
ered.

The stretched-exponential PDF (55) has the scaling
form (40) for 9!2#1 and implies the power-law growth
(39) of the averaged powers of the distance between
trajectories. The PDF is Gaussian in the rough case 2
!0. Note that the Richardson law *R2(t)+6t3 is repro-
duced for 2!4/3 and not for 2!2/3 (where the velocity
has the spatial Hölder exponent 1/3). The reason is that
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culable. We shall use a formal functional integral ap-
proach (Chertkov, 1997; Bernard et al., 1998). In the
phase space path integral representation of the solution
of Eq. (44),
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to perform. It replaces the exponent in Eq. (49) by
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t ( ip($)• ṙ($)$(D0$%)p2($))d$ and results in the
path-integral represention of the heat kernel of the La-
placian for which we shall use the operator notation
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(r;R). In other words, the average of Eq.
(49) is the solution of the heat equation (with diffusivity
D0$%) equal to ! (R#r) at time s . The above calcula-
tion confirms then the result discussed at the end of Sec.
II.A about the all-time diffusive behavior of a single
fluid particle in the Kraichnan ensemble.

In order to study the two-particle dispersion, one
should examine the joint PDF of the equal-time values
of two fluid particles averaged over the velocities
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The latter is given for the Kraichnan ensemble by the
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order differential operator
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In other words, the PDF P2 satisfies the equation (/ t
#M2)P2!0(t#s)0(R1#r1)0(R2#r2), a result which
goes back to the original work of Kraichnan (1968). In-
deed, the Gaussian expectation (50) is again easily com-
putable in view of the fact that the velocity enters
through the exponential function in Eq. (49). The result
is the path-integral expression
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for the heat kernel of M2 .
Let us concentrate on the relative separation R!R1

#R2 of two fluid particles at time t , given their separa-
tion r at time zero. The relevant PDF P̃(r;R;t) is ob-
tained by averaging over the simultaneous translations
of the final (or initial) positions of the particles. Explic-
itly, it is given by the heat kernel of the operator M̃
!(dij(r)$2%0 ij).ri.rj equal to the restriction of M2 to
the translationally invariant sector. Note that the eddy
diffusivity D0 , dominated by the integral scale, drops
out from M̃. The above result shows that the relative
motion of two fluid particles is an effective diffusion
with a distance-dependent diffusivity tensor scaling like
r2 in the inertial range. This is a precise realization of
the scenario for turbulent diffusion put up by Richard-
son (1926).

Similarly, the PDF of the distance R between two par-
ticles is given by the heat kernel e !t!M(r ;R), where M is
the restriction of M2 to the homogeneous and isotropic
sector. Explicitly,
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1
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in the scaling regime and its heat kernel may be readily
analyzed. In the Batchelor regime 2!2 and for %→0,
the heat kernel of M reproduces the lognormal distribu-
tion (23) with 3!2D1(d#1) and 4̄!D1d(d#1); see
Sec. II.B.2.a.

The simple criterion allowing us to decide whether the
Markov process stays diffused as %→0 is to control the

limit r→0 of the PDF P(r ;R ;t) (Bernard et al., 1998).
For smooth velocities, it follows from Eq. (23) that

lim
r→0
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In simple words, when the initial points converge, so do
the end points of the process. Conversely, for 052&2
we have
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in the scaling limit 7!0, L!8 . That confirms the dif-
fused character of the limiting process describing the La-
grangian trajectories in fixed non-Lipschitz velocities:
the end points of the process stay at finite distance even
if the initial points converge. If we set the viscous cutoff
to zero keeping L finite, the behavior (55) crosses over
for R(L to a simple diffusion with diffusivity 2D0 : at
such large distances the particle velocities are essentially
independent and the single-particle behavior is recov-
ered.

The stretched-exponential PDF (55) has the scaling
form (40) for 9!2#1 and implies the power-law growth
(39) of the averaged powers of the distance between
trajectories. The PDF is Gaussian in the rough case 2
!0. Note that the Richardson law *R2(t)+6t3 is repro-
duced for 2!4/3 and not for 2!2/3 (where the velocity
has the spatial Hölder exponent 1/3). The reason is that
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D0$%) equal to ! (R#r) at time s . The above calcula-
tion confirms then the result discussed at the end of Sec.
II.A about the all-time diffusive behavior of a single
fluid particle in the Kraichnan ensemble.

In order to study the two-particle dispersion, one
should examine the joint PDF of the equal-time values
of two fluid particles averaged over the velocities
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putable in view of the fact that the velocity enters
through the exponential function in Eq. (49). The result
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for the heat kernel of M2 .
Let us concentrate on the relative separation R!R1

#R2 of two fluid particles at time t , given their separa-
tion r at time zero. The relevant PDF P̃(r;R;t) is ob-
tained by averaging over the simultaneous translations
of the final (or initial) positions of the particles. Explic-
itly, it is given by the heat kernel of the operator M̃
!(dij(r)$2%0 ij).ri.rj equal to the restriction of M2 to
the translationally invariant sector. Note that the eddy
diffusivity D0 , dominated by the integral scale, drops
out from M̃. The above result shows that the relative
motion of two fluid particles is an effective diffusion
with a distance-dependent diffusivity tensor scaling like
r2 in the inertial range. This is a precise realization of
the scenario for turbulent diffusion put up by Richard-
son (1926).
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fused character of the limiting process describing the La-
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to zero keeping L finite, the behavior (55) crosses over
for R(L to a simple diffusion with diffusivity 2D0 : at
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independent and the single-particle behavior is recov-
ered.
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(39) of the averaged powers of the distance between
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duced for 2!4/3 and not for 2!2/3 (where the velocity
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culable. We shall use a formal functional integral ap-
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phase space path integral representation of the solution
of Eq. (44),

p!r,s ;R,t!v"!"r(s)!r
r(t)!R

exp# ""
s

t
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D0$%) equal to ! (R#r) at time s . The above calcula-
tion confirms then the result discussed at the end of Sec.
II.A about the all-time diffusive behavior of a single
fluid particle in the Kraichnan ensemble.

In order to study the two-particle dispersion, one
should examine the joint PDF of the equal-time values
of two fluid particles averaged over the velocities
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putable in view of the fact that the velocity enters
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for the heat kernel of M2 .
Let us concentrate on the relative separation R!R1

#R2 of two fluid particles at time t , given their separa-
tion r at time zero. The relevant PDF P̃(r;R;t) is ob-
tained by averaging over the simultaneous translations
of the final (or initial) positions of the particles. Explic-
itly, it is given by the heat kernel of the operator M̃
!(dij(r)$2%0 ij).ri.rj equal to the restriction of M2 to
the translationally invariant sector. Note that the eddy
diffusivity D0 , dominated by the integral scale, drops
out from M̃. The above result shows that the relative
motion of two fluid particles is an effective diffusion
with a distance-dependent diffusivity tensor scaling like
r2 in the inertial range. This is a precise realization of
the scenario for turbulent diffusion put up by Richard-
son (1926).

Similarly, the PDF of the distance R between two par-
ticles is given by the heat kernel e !t!M(r ;R), where M is
the restriction of M2 to the homogeneous and isotropic
sector. Explicitly,

M!
1

rd#1 /r(!d#1 "D1rd#1$2$2%rd#1)/r (53)

in the scaling regime and its heat kernel may be readily
analyzed. In the Batchelor regime 2!2 and for %→0,
the heat kernel of M reproduces the lognormal distribu-
tion (23) with 3!2D1(d#1) and 4̄!D1d(d#1); see
Sec. II.B.2.a.

The simple criterion allowing us to decide whether the
Markov process stays diffused as %→0 is to control the

limit r→0 of the PDF P(r ;R ;t) (Bernard et al., 1998).
For smooth velocities, it follows from Eq. (23) that

lim
r→0
%→0

P!r ;R ;t "!0!R ". (54)

In simple words, when the initial points converge, so do
the end points of the process. Conversely, for 052&2
we have

lim
r→0
%→0

P!r ;R ;t "6
Rd#1

!t!d/(2#2) exp%#const'
R2#2

!t! & , (55)

in the scaling limit 7!0, L!8 . That confirms the dif-
fused character of the limiting process describing the La-
grangian trajectories in fixed non-Lipschitz velocities:
the end points of the process stay at finite distance even
if the initial points converge. If we set the viscous cutoff
to zero keeping L finite, the behavior (55) crosses over
for R(L to a simple diffusion with diffusivity 2D0 : at
such large distances the particle velocities are essentially
independent and the single-particle behavior is recov-
ered.

The stretched-exponential PDF (55) has the scaling
form (40) for 9!2#1 and implies the power-law growth
(39) of the averaged powers of the distance between
trajectories. The PDF is Gaussian in the rough case 2
!0. Note that the Richardson law *R2(t)+6t3 is repro-
duced for 2!4/3 and not for 2!2/3 (where the velocity
has the spatial Hölder exponent 1/3). The reason is that
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culable. We shall use a formal functional integral ap-
proach (Chertkov, 1997; Bernard et al., 1998). In the
phase space path integral representation of the solution
of Eq. (44),

p!r,s ;R,t!v"!"r(s)!r
r(t)!R

exp# ""
s

t
#ip($)•( ṙ($)#v[r($),$)]

$%p2($)&d$ $ Dp Dr, (49)

for s%
&t , the Gaussian average over the velocities is easy

to perform. It replaces the exponent in Eq. (49) by
"' s

t ( ip($)• ṙ($)$(D0$%)p2($))d$ and results in the
path-integral represention of the heat kernel of the La-
placian for which we shall use the operator notation
e !t#s!(D0$%)“2

(r;R). In other words, the average of Eq.
(49) is the solution of the heat equation (with diffusivity
D0$%) equal to ! (R#r) at time s . The above calcula-
tion confirms then the result discussed at the end of Sec.
II.A about the all-time diffusive behavior of a single
fluid particle in the Kraichnan ensemble.

In order to study the two-particle dispersion, one
should examine the joint PDF of the equal-time values
of two fluid particles averaged over the velocities

*p!r1 ,s ;R1 ,t!v"p!r2 ,s ;R2 ,t!v"+,P2!r1 ,r2 ;R1 ,R2 ;t#s ".
(50)

The latter is given for the Kraichnan ensemble by the
heat kernel e !t#s!M2(r1 ,r2 ;R1 ,R2) of the elliptic second-
order differential operator

M2! -
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n!1

2
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2 . (51)

In other words, the PDF P2 satisfies the equation (/ t
#M2)P2!0(t#s)0(R1#r1)0(R2#r2), a result which
goes back to the original work of Kraichnan (1968). In-
deed, the Gaussian expectation (50) is again easily com-
putable in view of the fact that the velocity enters
through the exponential function in Eq. (49). The result
is the path-integral expression
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[ipn($)• ṙn($)$%pn
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for the heat kernel of M2 .
Let us concentrate on the relative separation R!R1

#R2 of two fluid particles at time t , given their separa-
tion r at time zero. The relevant PDF P̃(r;R;t) is ob-
tained by averaging over the simultaneous translations
of the final (or initial) positions of the particles. Explic-
itly, it is given by the heat kernel of the operator M̃
!(dij(r)$2%0 ij).ri.rj equal to the restriction of M2 to
the translationally invariant sector. Note that the eddy
diffusivity D0 , dominated by the integral scale, drops
out from M̃. The above result shows that the relative
motion of two fluid particles is an effective diffusion
with a distance-dependent diffusivity tensor scaling like
r2 in the inertial range. This is a precise realization of
the scenario for turbulent diffusion put up by Richard-
son (1926).
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the restriction of M2 to the homogeneous and isotropic
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in the scaling limit 7!0, L!8 . That confirms the dif-
fused character of the limiting process describing the La-
grangian trajectories in fixed non-Lipschitz velocities:
the end points of the process stay at finite distance even
if the initial points converge. If we set the viscous cutoff
to zero keeping L finite, the behavior (55) crosses over
for R(L to a simple diffusion with diffusivity 2D0 : at
such large distances the particle velocities are essentially
independent and the single-particle behavior is recov-
ered.

The stretched-exponential PDF (55) has the scaling
form (40) for 9!2#1 and implies the power-law growth
(39) of the averaged powers of the distance between
trajectories. The PDF is Gaussian in the rough case 2
!0. Note that the Richardson law *R2(t)+6t3 is repro-
duced for 2!4/3 and not for 2!2/3 (where the velocity
has the spatial Hölder exponent 1/3). The reason is that
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goes back to the original work of Kraichnan (1968). In-
deed, the Gaussian expectation (50) is again easily com-
putable in view of the fact that the velocity enters
through the exponential function in Eq. (49). The result
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for the heat kernel of M2 .
Let us concentrate on the relative separation R!R1

#R2 of two fluid particles at time t , given their separa-
tion r at time zero. The relevant PDF P̃(r;R;t) is ob-
tained by averaging over the simultaneous translations
of the final (or initial) positions of the particles. Explic-
itly, it is given by the heat kernel of the operator M̃
!(dij(r)$2%0 ij).ri.rj equal to the restriction of M2 to
the translationally invariant sector. Note that the eddy
diffusivity D0 , dominated by the integral scale, drops
out from M̃. The above result shows that the relative
motion of two fluid particles is an effective diffusion
with a distance-dependent diffusivity tensor scaling like
r2 in the inertial range. This is a precise realization of
the scenario for turbulent diffusion put up by Richard-
son (1926).

Similarly, the PDF of the distance R between two par-
ticles is given by the heat kernel e !t!M(r ;R), where M is
the restriction of M2 to the homogeneous and isotropic
sector. Explicitly,
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in the scaling regime and its heat kernel may be readily
analyzed. In the Batchelor regime 2!2 and for %→0,
the heat kernel of M reproduces the lognormal distribu-
tion (23) with 3!2D1(d#1) and 4̄!D1d(d#1); see
Sec. II.B.2.a.

The simple criterion allowing us to decide whether the
Markov process stays diffused as %→0 is to control the

limit r→0 of the PDF P(r ;R ;t) (Bernard et al., 1998).
For smooth velocities, it follows from Eq. (23) that

lim
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In simple words, when the initial points converge, so do
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we have
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Rd#1

!t!d/(2#2) exp%#const'
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!t! & , (55)

in the scaling limit 7!0, L!8 . That confirms the dif-
fused character of the limiting process describing the La-
grangian trajectories in fixed non-Lipschitz velocities:
the end points of the process stay at finite distance even
if the initial points converge. If we set the viscous cutoff
to zero keeping L finite, the behavior (55) crosses over
for R(L to a simple diffusion with diffusivity 2D0 : at
such large distances the particle velocities are essentially
independent and the single-particle behavior is recov-
ered.

The stretched-exponential PDF (55) has the scaling
form (40) for 9!2#1 and implies the power-law growth
(39) of the averaged powers of the distance between
trajectories. The PDF is Gaussian in the rough case 2
!0. Note that the Richardson law *R2(t)+6t3 is repro-
duced for 2!4/3 and not for 2!2/3 (where the velocity
has the spatial Hölder exponent 1/3). The reason is that
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sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→! and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim "→0"#!“v!2$%0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform

D̂ij&k'(" ) ij!
kikj

k2 # e!(*k)2

&k2"L!2'(d"+)/2 , (46)

with 0,+,2. In physical space,

Dij&r'#D0) ij!
1
2

dij&r', (47)

where dij(r) scales as r+ in the inertial interval *$r
$L , as r2 in the viscous range r$* and tends to 2D0) ij

at very large scales r%L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D0#O(L+) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits *→0 and L→! , it takes
the scaling form

lim
*→0
L→!

dij&r'#D1r+" &d!1"+') ij!+
rirj

r2 # , (48)

where the normalization constant D1 has the dimension-
ality of (length2!+)&(time!1).

For 0'+'2 and *(0, the typical velocities are
smooth in space with the scaling behavior r+ visible only
for scales much larger than the viscous cutoff *. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent +/2!0. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case +#2 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.
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the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
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the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.
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Having listed different subdiffusive and superdiffusive
cases, from now on we shall be interested in random
turbulent flows with finite Lagrangian correlation times,
which are experimentally known to occur for sufficiently
high Reynolds numbers (Pope, 1994). For the long-time
description of the diffusion in such flows, it is useful to
consider the extreme case of random homogeneous and
stationary Eulerian velocities with a short correlation
time. The formal way to get these processes is to change
the time scale by taking the scaling limit
lim!→"!1/2v(r,!t), i.e., considering the process as
viewed in a sped-up film. We assume that the connected
correlation functions2 decay fast enough when time dif-
ferences increase. The elementary consequences of
those assumptions are the existence of the long-time
asymptotic limit and the fact that it is governed by the
central limit theorem. When !→" , we recover a veloc-
ity field which is Gaussian and white in time, character-
ized by the two-point function

#v i$r,t %v j$r!,t!%&!2'$ t"t!%Dij$r"r!%. (10)

The advection by such velocity fields was first consid-
ered by Kraichnan (1968) and it is common to call the
Gaussian ensemble of velocities with two-point function
(10) the Kraichnan ensemble. For the Kraichnan en-
semble, the Lagrangian velocity V(t) has the same
white-noise temporal statistics as the Eulerian one v(r,t)
for fixed r and the displacement along a Lagrangian tra-
jectory (R(t) is a Brownian motion for all times. The
eddy diffusivity tensor is De

ij!Dij(0), which is a special
case of relation (9). In the presence of molecular diffu-
sion, the overall diffusivity is the sum of the eddy con-
tribution and the molecular value )' ij.

In realistic turbulent flows, the Lagrangian correlation
time * is comparable to the characteristic time scale of
large eddies. Progress in numerical simulations (Yeung,
1997) and experimental technique (Voth et al., 1998; La
Porta et al., 2001; Mordant et al., 2001) has provided in-
formation on the single-particle statistics in the regime
intermediate between ballistic and diffusive. Such be-
havior is captured by the the subtracted Lagrangian au-
tocorrelation function #V(0)+V(0)"V(t),& or its sec-
ond time derivative that is the autocorrelation function
of the Lagrangian acceleration. This information has
provided stringent tests on simple stochastic models
(that eliminate velocity fields), often used in the past to
describe the one-particle and two-particle statistics in
turbulent flows (Pope, 1994). The Kraichnan ensemble
that models stochastic velocity fields certainly misrepre-
sents the single-particle statistics by suppressing the re-
gime of times smaller than *. It constitutes, however, as
we shall see in the sequel, an important theoretical labo-
ratory for studying the multiparticle statistics in fluid tur-
bulence.

B. Two-particle dispersion in a smooth velocity

The separation R12!R1"R2 between two fluid par-
ticles with trajectories Rn(t)!R(t ;rn) passing at t!0
through the points rn satisfies (in the absence of Brown-
ian motion) the equation

Ṙ12!v$R1 ,t %"v$R2 ,t %. (11)

We consider first an incompressible flow where the par-
ticles generally separate. In this subsection, we start
from the smallest distances where the velocity field can
be considered spatially smooth due to viscous effects. In
next subsection (Sec. II.C), we treat the dispersion prob-
lem for larger distances (in the inertial interval of turbu-
lence) where the velocity field has a nontrivial scaling.
Finally, we describe a compressible flow and show how
the separation among the particles is replaced by their
clustering as the degree of compressibility grows.

1. General considerations

In smooth velocities, for separations R12 much smaller
than the viscous scale of turbulence, i.e., in the so-called
Batchelor regime (Batchelor, 1959), we may approxi-
mate v(R1 ,t)"v(R2 ,t)-.(t)R12(t) with the Lagrang-
ian strain matrix . ij(t)!/ jv i+R2(t),t, . In this regime,
the separation obeys the ordinary differential equation

Ṙ12$ t %!.$ t %R12$ t %, (12)

leading to the linear propagation

R12$ t %!W$ t %R12$0 %, (13)

where the evolution matrix is defined as Wij(t)
!0Ri(r;t)/0rj with r!r2 . We shall also use the notation
W(t ;r) when we wish to keep track of the initial point or
W(t ;r,s) if the initial time s is different from zero.

Equation (12), with the strain treated as given, may be
explicitly solved for arbitrary .(t) only in the 1D case
by expressing W(t) as the exponential of the time-
integrated strain:

ln+R$ t %/R$0 %,!ln W$ t %!!
0

t
.$s %ds1X . (14)

We have omitted subscripts replacing R12 by R. When t
is much larger than the correlation time * of the strain,
the variable X behaves as a sum of many independent
equally distributed random numbers X!21

Nyi with N
3t/* . Its mean value #X&!N#y& grows linearly in time.
Its fluctuations X"#X& on the scale O(t1/2) are gov-
erned by the central limit theorem that states that (X
"#X&)/N1/2 becomes for large N a Gaussian random
variable with variance #y2&"#y&21( . Finally, its fluctua-
tions on the larger scale O(t) are governed by the large
deviation theorem that states that the PDF of X has
asymptotically the form

P$X %3e"NH(X/N"#y&). (15)

This is an easy consequence of the exponential depen-
dence on N of the generating function #ezX& of the mo-
ments of X . Indeed, #ezX&!eNS(z), where we have de-

2The connected correlation functions, also called cumulants,
are recursively defined by the relation #v1¯vn&
!2456786##v56(1) , . . . ,v56(n6)&& with the sum over the parti-
tions of 41, . . . ,n7.
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tion as that of the mean position R̄!!nRn /N . When the
particles separate beyond the velocity correlation length,
they are essentially independent. The absolute motion is
then diffusive with the diffusivity N times smaller than
that of a single particle. The relative motion of N par-
ticles may be described by the versions of the joint
PDF’s (65) averaged over rigid translations:

P̃N"r!;R! ;t #!! PN"r!;R! "!! ;t #d!, (66)

where !!!(!, . . . ,!). The PDF in Eq. (66) describes the
distribution of the particle separations Rnm!Rn#Rm or
of the relative positions R!̃ !(R1#R̄, . . . ,RN#R̄).

As for two particles, we expect that when $→0 the
multiparticle Green functions PN tend to (possibly dis-
tributional) limits that we shall denote by the same sym-
bol. The limiting PDF’s are again expected to show a
different short-distance behavior for smooth and non-
smooth velocities. For smooth velocities, the existence
of deterministic trajectories leads for $!0 to the col-
lapse property

lim
rN→rN#1

PN"r!;R! ;t #!PN#1"r!!;R! !;t #""RN#1#RN#,

(67)

where R! !!(R1 , . . . ,RN#1) and similarly for the relative
PDF’s. If all the distances among the particles are much
smaller than the viscous cutoff, the velocity differences
are approximated by linear expressions and

P̃N"r!;R! ;t #!! " %
n!1

N

""Rn"!#W" t #rn## d!. (68)

The evolution matrix W(t) was defined in Eq. (16) and
the above PDF’s clearly depend only on its statistics
which has been discussed in Sec. II.B.

2. Multiparticle motion in Kraichnan velocities

The great advantage of the Kraichnan model is that
the statistical Lagrangian integrals of motion can be
found as zero modes of explicit evolution operators. In-
deed, the crucial simplification lies in the Markov char-
acter of the Lagrangian trajectories due to the velocity
time decorrelation. In other words, the processes R! (t)
and R!̃ (t) are Markovian and the multiparticle Green
functions PN and P̃N give, for fixed N , their transition
probabilities. The process R! (t) is characterized by its
second-order differential generator MN , whose explicit
form may be deduced by a straightforward generaliza-
tion of the path-integral representation (52) to N par-
ticles. The PDF PN(r!;R! ;t)!e $t#s$MN(r!;R! ) with

MN! !
n ,m!1

N

Dij"rnm#&rn
i &rm

j "$ !
n!1

N

“rn

2 . (69)

For the relative process R!̃ (t), the operator MN should
be replaced by its translation-invariant version

M̃N!# !
n$m

'dij"rnm#"2$( ij)&rn
i &rm

j , (70)

with dij related to Dij by Eq. (47). Note the multibody
structure of the operators in Eqs. (69) and (70). The
limiting PDF’s obtained for $→0 define the heat kernels
of the $!0 version of the operators that are singular
elliptic and require some care in handling (Hakulinen,
2000).

As we have seen previously, the Kraichnan ensemble
may be used to model both smooth and Hölder continu-
ous velocities. In the first case, one keeps the viscous
cutoff * in the two-point correlation (46) with the result
that dij(r)!O(r2) for r%* as in Eq. (29), or one sets
+!2 in Eq. (48). The latter is equivalent to the approxi-
mation (68) with W(t) becoming a diffusion process on
the group SL(d) of unimodular matrices, with an explic-
itly known generator, as discussed in Sec. II.B.2.a. The
right-hand side of Eq. (68) may then be studied by using
the representation theory (Shraiman and Siggia, 1995,
1996; Bernard et al., 1998), see also Sec. II.E.5 below. It
exhibits the collapse property (67).

From the form (70) of the generator of the process
R!̃ (t) in the Kraichnan model, we infer that N fluid par-
ticles undergo an effective diffusion with the diffusivity
depending on the interparticle distances. In the inertial
interval and for a small molecular diffusivity $, the ef-
fective diffusivity scales as the power + of the interpar-
ticle distances. Comparing to the standard diffusion with
constant diffusivity, it is intuitively clear that the par-
ticles spend longer time together when they are close
and separate faster when they become distant. Both ten-
dencies may coexist and dominate the motion of differ-
ent clusters of particles. It remains to find a more ana-
lytic and quantitative way to capture those behaviors.
The effective short-distance attraction that slows down
the separation of close particles is a robust collective
phenomenon expected to be present also in time-
correlated and non-Gaussian velocity fields. We believe
that it is responsible for the intermittency of scalar fields
transported by high Reynolds number flows, as it will be
discussed in the second part of the review.

As for a single particle, the absolute motion of N par-
ticles is dominated by velocity fluctuations on scales of
order L . In contrast, the relative motion within the in-
ertial range is approximately independent of the velocity
cutoffs and it is convenient to take directly the scaling
limit *!0 and L!, . We shall also set the molecular
diffusivity to zero. In these limits, M̃N has the dimen-
sion length+#2, implying that time scales as length2#+

and

P̃N"-r!;R! ;t #!-#(N#1)dP̃N"r!;-#1R! ;-+#2t #. (71)

The relative motion of N fluid particles may be tested by
tracing the time evolution of the Lagrangian averages

.f„R! " t #…/!! f"R! #P̃N"r!;R! ;t #dR! ! (72)

of translation-invariant functions f of the simultaneous
particle positions. Think about the evolution of N fluid
particles as that of a discrete cloud of marked points in
physical space. There are two elements in the evolution

931Falkovich, Gawȩdzki, & Vergassola: Particles and fields in fluid turbulence

Rev. Mod. Phys., Vol. 73, No. 4, October 2001

Multi-particle separation
N particles
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ṙi = v(ri, t) +
p
2⌘i i = 1, . . . , N

that a2/! is much smaller than the velocity time scale in
the Lagrangian frame. The inertial difference between
the effective velocity v of the particle and the fluid ve-
locity u(r,t) is proportional to the local acceleration: v
!u"("#1)#s du/dt , where "!3$/($"2$0) and #s
!a2/3!" is the Stokes time. Considering such particles
distributed in the volume, one may define the velocity
field v(r,t), whose divergence %“&(u•“)u' does not
vanish even if the fluid flow is incompressible. As dis-
cussed above, this leads to a negative volume growth
rate and the clustering of the particles (Balkovsky et al.,
2001).

E. Multiparticle dynamics, statistical conservation laws,
and breakdown of scale invariance

This subsection is a highlight of the review. We de-
scribe here the time-dependent statistics of multiparticle
configurations with the emphasis on conservation laws
of turbulent transport. As we have seen in the previous
subsections, the two-particle statistics is characterized by
a simple behavior of the single separation vector. In non-
smooth velocities, the length of the vector grows by a
power law, while the initial separation is forgotten and
there are no statistical integrals of motion. In contrast,
the many-particle evolution exhibits nontrivial statistical
conservation laws that involve geometry and are propor-
tional to positive powers of the distances. The distance
growth is balanced by the decrease of the shape fluctua-
tions in those integrals. The existence of multiparticle
conservation laws indicates the presence of a long-time
memory and is a reflection of the coupling among the
particles due to the simple fact that they all are in the
same velocity field. The conserved quantities may be
easily built for the limiting cases. For very irregular ve-
locities, the fluid particles undergo independent Brown-
ian motions and the interparticle distances grow as
(Rnm

2 (t))!Rnm
2 (0)"Dt . Here, examples of statistical

integrals of motion are (Rnm
2 #Rpr

2 ) and (2(d
"2)Rnm

2 Rpr
2 #d(Rnm

4 "Rpr
4 )) , and an infinity of simi-

larly built harmonic polynomials where all the powers of
t cancel out. Another example is the infinite-
dimensional case, where the interparticle distances do
not fluctuate. The two-particle law (38), Rnm

1#*(t)
#Rnm

1#*(0)%t , implies then that the expectation of any
function of Rnm

1#*#Rpr
1#* does not change with time. A

final example is provided by smooth velocities, where
the particle separations at long times become aligned
with the eigendirections of the largest Lyapunov expo-
nent of the evolution matrix W(t) defined in Eq. (16).
All the interparticle distances Rnm will then grow expo-
nentially and their ratios Rnm /Rkl do not change. Away
from the degenerate limiting cases, the conserved quan-
tities continue to exist, yet they cannot be constructed so
easily and they depend on the number of particles and
their configuration geometry. The very existence of con-
served quantities is natural; what is generally nontrivial
is their precise form and their scaling. The intricate sta-
tistical conservation laws of multiparticle dynamics were
first discovered for the Kraichnan velocities. That came

as a surprise since the Kraichnan velocity ensemble is
Gaussian and time decorrelated, with no structure built
in, except for the spatial scaling in the inertial range.
The discovery has led to a new qualitative and quantita-
tive understanding of intermittency, as we shall discuss
in detail in Sec. III.C.1. Even more importantly, it has
pointed to aspects of the multiparticle evolution that
seem both present and relevant in generic turbulent
flows. Note that those aspects are missed by simple sto-
chastic processes commonly used in numerical Lagrang-
ian models. There is, for example, a long tradition to
take for each trajectory the time integral of a
d-dimensional Brownian motion (whose variance is %t3

as in the Richardson law) or an Ornstein-Uhlenbeck
process. Such models, however, cannot capture correctly
the subtle features of the N-particle dynamics such as
the statistical conservation laws.

1. Absolute and relative evolution of particles

As for many-body problems in other branches of
physics, e.g., in kinetic theory or in quantum mechanics,
multiparticle dynamics brings about new aspects due to
cooperative effects. In turbulence, such effects are me-
diated by the velocity fluctuations with long space corre-
lations. Consider the joint PDF’s of the equal-time posi-
tions R! !(R1 , . . . ,RN) of N fluid trajectories

! +
n!1

N

p,rn ,s ;Rn ,t"v-# .PN,r!;R! ;t#s -, (65)

with the average over the velocity ensemble; see Fig. 3.
More generally, one may study the different-time ver-
sions of Eq. (65). Such PDF’s, called multiparticle Green
functions, account for the overall statistics of the many-
particle systems.

For statistically homogeneous velocities, it is conve-
nient to separate the absolute motion of the particles
from the relative one, as in other many-body problems
with spatial homogeneity. For a single particle, there is
nothing but the absolute motion which is diffusive at
times longer than the Lagrangian correlation time (Sec.
II.A). For N particles, we may define the absolute mo-

FIG. 3. An example of Lagrangian trajectories of three par-
ticles. The probability density of the positions R! , conditional
to the r!’s, is described by the PDF p(r,s ;R,t"v) (in a fixed
realization of the velocity). Its average over the statistics of the
velocity field gives the Green functions P(r!;R! ;t#s).
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Multiparticle propagator

N=2   we saw that  the separation R grows as a power law 
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Multi-particle separation: e.g. N=4
Example characterization of N=4 particles

Multi-particle dispersion in 3D HIT
Thetraedra dispersion: the way 4 tracers initially close-by separate

(Chertkov, Pumir, Shraiman 1999)

It can be studied in terms of the eingenvalues �g� of the inertia matrix I = rrT

built from vectors r1, r2, r3 in the set of coordinates independent of centre of mass r0
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Multi-particle dispersion in 3D HIT
Thetraedra dispersion: the way 4 tracers initially close-by separate
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It can be studied in terms of the eingenvalues �g� of the inertia matrix I = rrT

built from vectors r1, r2, r3 in the set of coordinates independent of centre of mass r0
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Multi-particle separation: N=4

L. Biferale;  G. Boffetta;  A. Celani;  B. J. Devenish;  A. Lanotte;  F. Toschi PoF 17, 111701 (2005)

see also A. Pumir,1 B.I. Shraiman, M. Chertkov PRL 85, 5324 (2000)  for a previous study at lower Re  


In general it was found  and  denoting preference for elongated and planar geometriesI2 ≪ I1 I3 ≪ I2

cording to Richardson’s law and a stationary shape distribu-
tion are expected.

In order to characterize the shape dynamics quantita-
tively, it is useful to introduce the following change of
coordinates:12 !0= !x1+x2+x3+x4" /2, !1= !x2−x1" /#2,
!2= !2x3−x2−x1" /#6, !3= !3x4−x3−x2−x1" /#12. By virtue
of the statistical homogeneity of the velocity field as well as
of the initial distribution of the centers of mass, the Lagrang-
ian statistics do not depend on !0. The information about the
particle separations can be embodied in the square matrix
! whose columns are the three vectors !i with i=1,2 ,3.
Denoted by gi !g1!g2!g3" the eigenvalues of the moment
of the inertia matrix, I=!!T !that is positive defined", we
have that the size of the tetrahedron is r$#tr!I"
=#g1+g2+g3=#1

8%i,j&xi−x j&2, whereas the volume can be

expressed as V= 1
3 det!!"= 1

3
#g1g2g3. A convenient character-

ization of shapes is given in terms of the dimensionless
quantities Ii=gi /r2 !where obviously I1+ I2+ I3=1". For a
regular tetrahedron one has I1= I2= I3=1/3. If the four points
are coplanar one has I3=0 and for a collinear configuration
I2= I3=0.

Figure 1 shows the temporal evolution of the mean ei-
genvalues of !!T for the smallest regular tetrahedra with
gi!0"="x2 /2. Two very different regimes are evident; at
small times t#$% the evolution of tetrahedra is governed by
the dissipative range of turbulence. Because of the smooth-
ness and incompressibility of the velocity field in this range,
the volume of each tetrahedron is approximately preserved
and so is its average value which is shown in Fig. 1. In the
viscous range the shape dynamics are essentially character-
ized by the Lagrangian Lyapunov exponents;23 as a conse-
quence the mean square separation r2 grows exponentially in
time. From the average growth rate of the logarithms of the
separations, R!t"= &!1&, areas A!t"=#3/2&!1&!2& and vol-
umes V!t"= 1

3 &!1&!2&!3& at small times, we can obtain an
estimation of the Lagrangian Lyapunov spectrum as shown
in Fig. 1. We found two positive Lyapunov exponents, with
'1$%'0.12 and '2''1 /4, in agreement with previous find-
ings at lower R'.24,25 The sum of the three Lyapunov expo-

nents so obtained is close to zero for times up to 3$%.
The exponential growth brings particle separations out-

side the dissipative range, where the velocity field becomes
rough and the inertial range sets in. According to the
Kolmogorov-Richardson scaling, eigenvalues should grow
as gi( t3. As previously reported,13 it is hard to extract a
clear scaling regime for the shape dynamics shown in Fig. 1.
The main reason for the lack of self-similarity is due to the
contamination of the inertial range by the dissipative range.
Indeed, because of the strong shape distortion taking place at
the crossover between the dissipative and inertial ranges !as
shown in Fig. 1 by the separation of the three eigenvalues", a
significant fraction of tetrahedra has one side in the dissipa-
tive range even at times much larger than $%. In order to
overcome this problem we have utilized the technique of
doubling time statistics that has already been successfully
used to remove contaminations in the statistics of pair
dispersion.10,26,27 At variance with fixed-time statistics, dou-
bling times are essentially insensitive to the choice of the
initial size of the tetrahedron.10 Here, we focus on the dou-
bling times of the eigenvalues gi: we compute the times,
T!gi", taken by a tetrahedron to increase its value of gi by a
factor a. The result is shown in Fig. 2. The presence of a
scaling range T(g1/3 is more clear and the self-similarity is
made evident by superimposing the three curves on top of
each other by a simple multiplicative factor on the g axis.
The ratio of the three eigenvalues in the scaling range is
g1 :g2 :g3=40:8 :1, corresponding to shape indices I2)0.16
and I3)0.02. The presence of a range where the doubling
times for different eigenvalues are the same is equivalent to
stating that the typical shape of the tetrahedron is preserved
while its size increases according to Richardson’s law.

In view of the existence of a self-similar regime for
shape evolution, one would expect that the statistics of the
shape indices, Ii, should reach a time-independent distribu-
tion. However, a direct inspection of the data does not sup-
port this conclusion !not shown here, the results do not
present an appreciable scaling range in time in spite of the
relatively high R' as compared with Ref. 13". Once more this
lack of a scaling range in the time domain can be traced back
to the contamination by the dissipative range dynamics.

This difficulty can be overcome by selecting those tetra-

FIG. 1. Evolution of the mean eigenvalues g1 !(", g2 !&" and g3 !!" of the
moment of inertia matrix I=!!T. The line represents the dimensional scal-
ing t3. In the inset, from top to bottom: evolution at small times of *ln A!t"+
!surface", *ln R!t"+ !distance", *ln V!t"+ !volume". The linear slopes of the
three curves in the range of times $%# t#3$% yield '1+'2, '1, and '1+'2
+'3, respectively.

FIG. 2. Doubling times for the eigenvalues, gi, of the moment of inertia
matrix, !!T. In the inset: the same data rescaled on the horizontal axis with
the proportions g1 :g2 :g3=40:8 :1.
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Statistical analysis of four particles dispersion

(Biferale et al., Phys. Fluids 2005)

Model Shape parameters < Ii>

I3 = 0.015 ≠ 0.03

I2 = 0.151 ≠ 0.2

I1 = 0.83 ≠ 0.75

1. Shape is self-similarly preserved
while particles separate

2. <Ii> different from those of independent,
Gaussian distributed particles

3. Dynamically more pancake shapes
are formed

4. DNS values for <I> slightly diff. 
<I2>=0.135    <I3>=0.011 

Model Volume parameters < gi>

DNS RESULTS
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hI1i = 0.854 hI2i = 0.135 hI3i = 0.011
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Time evolution of tetrads 
in 3D turbulence
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Multi-particle separation: N=4

H Xu,, N T. Ouellette, E Bodenschatz. New Journal of Physics 10, no. 1 (2008): 013012.

EXP are in qualitative agreement with DNS

But: 
1. no evidence of  size growth 
2. difficulty to have long time information due 

to finite volume effects in the experiment  
3. size of initial tetraedon is quite large

t3



Multi-particle separation: Lagrangian average
Let us reconsider 

 the Kraichnan model

sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→! and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim "→0"#!“v!2$%0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform

D̂ij&k'(" ) ij!
kikj

k2 # e!(*k)2

&k2"L!2'(d"+)/2 , (46)

with 0,+,2. In physical space,

Dij&r'#D0) ij!
1
2

dij&r', (47)

where dij(r) scales as r+ in the inertial interval *$r
$L , as r2 in the viscous range r$* and tends to 2D0) ij

at very large scales r%L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D0#O(L+) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits *→0 and L→! , it takes
the scaling form

lim
*→0
L→!

dij&r'#D1r+" &d!1"+') ij!+
rirj

r2 # , (48)

where the normalization constant D1 has the dimension-
ality of (length2!+)&(time!1).

For 0'+'2 and *(0, the typical velocities are
smooth in space with the scaling behavior r+ visible only
for scales much larger than the viscous cutoff *. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent +/2!0. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case +#2 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.
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sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→! and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim "→0"#!“v!2$%0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform

D̂ij&k'(" ) ij!
kikj

k2 # e!(*k)2

&k2"L!2'(d"+)/2 , (46)

with 0,+,2. In physical space,

Dij&r'#D0) ij!
1
2

dij&r', (47)

where dij(r) scales as r+ in the inertial interval *$r
$L , as r2 in the viscous range r$* and tends to 2D0) ij

at very large scales r%L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D0#O(L+) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits *→0 and L→! , it takes
the scaling form

lim
*→0
L→!

dij&r'#D1r+" &d!1"+') ij!+
rirj

r2 # , (48)

where the normalization constant D1 has the dimension-
ality of (length2!+)&(time!1).

For 0'+'2 and *(0, the typical velocities are
smooth in space with the scaling behavior r+ visible only
for scales much larger than the viscous cutoff *. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent +/2!0. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case +#2 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case +#0, the typical velocities are
very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.
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the regime that the analysis of Sec. II.B.2.a pertains to.
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very rough in space (distributional). For any +, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as *(0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D0"-) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,t!v) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,t!v) are exactly cal-

FIG. 1. An illustration of the breakdown of the Lagrangian
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reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
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rough             smooth         

Having listed different subdiffusive and superdiffusive
cases, from now on we shall be interested in random
turbulent flows with finite Lagrangian correlation times,
which are experimentally known to occur for sufficiently
high Reynolds numbers (Pope, 1994). For the long-time
description of the diffusion in such flows, it is useful to
consider the extreme case of random homogeneous and
stationary Eulerian velocities with a short correlation
time. The formal way to get these processes is to change
the time scale by taking the scaling limit
lim!→"!1/2v(r,!t), i.e., considering the process as
viewed in a sped-up film. We assume that the connected
correlation functions2 decay fast enough when time dif-
ferences increase. The elementary consequences of
those assumptions are the existence of the long-time
asymptotic limit and the fact that it is governed by the
central limit theorem. When !→" , we recover a veloc-
ity field which is Gaussian and white in time, character-
ized by the two-point function

#v i$r,t %v j$r!,t!%&!2'$ t"t!%Dij$r"r!%. (10)

The advection by such velocity fields was first consid-
ered by Kraichnan (1968) and it is common to call the
Gaussian ensemble of velocities with two-point function
(10) the Kraichnan ensemble. For the Kraichnan en-
semble, the Lagrangian velocity V(t) has the same
white-noise temporal statistics as the Eulerian one v(r,t)
for fixed r and the displacement along a Lagrangian tra-
jectory (R(t) is a Brownian motion for all times. The
eddy diffusivity tensor is De

ij!Dij(0), which is a special
case of relation (9). In the presence of molecular diffu-
sion, the overall diffusivity is the sum of the eddy con-
tribution and the molecular value )' ij.

In realistic turbulent flows, the Lagrangian correlation
time * is comparable to the characteristic time scale of
large eddies. Progress in numerical simulations (Yeung,
1997) and experimental technique (Voth et al., 1998; La
Porta et al., 2001; Mordant et al., 2001) has provided in-
formation on the single-particle statistics in the regime
intermediate between ballistic and diffusive. Such be-
havior is captured by the the subtracted Lagrangian au-
tocorrelation function #V(0)+V(0)"V(t),& or its sec-
ond time derivative that is the autocorrelation function
of the Lagrangian acceleration. This information has
provided stringent tests on simple stochastic models
(that eliminate velocity fields), often used in the past to
describe the one-particle and two-particle statistics in
turbulent flows (Pope, 1994). The Kraichnan ensemble
that models stochastic velocity fields certainly misrepre-
sents the single-particle statistics by suppressing the re-
gime of times smaller than *. It constitutes, however, as
we shall see in the sequel, an important theoretical labo-
ratory for studying the multiparticle statistics in fluid tur-
bulence.

B. Two-particle dispersion in a smooth velocity

The separation R12!R1"R2 between two fluid par-
ticles with trajectories Rn(t)!R(t ;rn) passing at t!0
through the points rn satisfies (in the absence of Brown-
ian motion) the equation

Ṙ12!v$R1 ,t %"v$R2 ,t %. (11)

We consider first an incompressible flow where the par-
ticles generally separate. In this subsection, we start
from the smallest distances where the velocity field can
be considered spatially smooth due to viscous effects. In
next subsection (Sec. II.C), we treat the dispersion prob-
lem for larger distances (in the inertial interval of turbu-
lence) where the velocity field has a nontrivial scaling.
Finally, we describe a compressible flow and show how
the separation among the particles is replaced by their
clustering as the degree of compressibility grows.

1. General considerations

In smooth velocities, for separations R12 much smaller
than the viscous scale of turbulence, i.e., in the so-called
Batchelor regime (Batchelor, 1959), we may approxi-
mate v(R1 ,t)"v(R2 ,t)-.(t)R12(t) with the Lagrang-
ian strain matrix . ij(t)!/ jv i+R2(t),t, . In this regime,
the separation obeys the ordinary differential equation

Ṙ12$ t %!.$ t %R12$ t %, (12)

leading to the linear propagation

R12$ t %!W$ t %R12$0 %, (13)

where the evolution matrix is defined as Wij(t)
!0Ri(r;t)/0rj with r!r2 . We shall also use the notation
W(t ;r) when we wish to keep track of the initial point or
W(t ;r,s) if the initial time s is different from zero.

Equation (12), with the strain treated as given, may be
explicitly solved for arbitrary .(t) only in the 1D case
by expressing W(t) as the exponential of the time-
integrated strain:

ln+R$ t %/R$0 %,!ln W$ t %!!
0

t
.$s %ds1X . (14)

We have omitted subscripts replacing R12 by R. When t
is much larger than the correlation time * of the strain,
the variable X behaves as a sum of many independent
equally distributed random numbers X!21

Nyi with N
3t/* . Its mean value #X&!N#y& grows linearly in time.
Its fluctuations X"#X& on the scale O(t1/2) are gov-
erned by the central limit theorem that states that (X
"#X&)/N1/2 becomes for large N a Gaussian random
variable with variance #y2&"#y&21( . Finally, its fluctua-
tions on the larger scale O(t) are governed by the large
deviation theorem that states that the PDF of X has
asymptotically the form

P$X %3e"NH(X/N"#y&). (15)

This is an easy consequence of the exponential depen-
dence on N of the generating function #ezX& of the mo-
ments of X . Indeed, #ezX&!eNS(z), where we have de-

2The connected correlation functions, also called cumulants,
are recursively defined by the relation #v1¯vn&
!2456786##v56(1) , . . . ,v56(n6)&& with the sum over the parti-
tions of 41, . . . ,n7.
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For  (i.e. rough flow) particles undergo independent Brownian motionsξ = 0
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How does it work?
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An example for smooth flows ξ = 2
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Kraichnan Model

tion as that of the mean position R̄!!nRn /N . When the
particles separate beyond the velocity correlation length,
they are essentially independent. The absolute motion is
then diffusive with the diffusivity N times smaller than
that of a single particle. The relative motion of N par-
ticles may be described by the versions of the joint
PDF’s (65) averaged over rigid translations:

P̃N"r!;R! ;t #!! PN"r!;R! "!! ;t #d!, (66)

where !!!(!, . . . ,!). The PDF in Eq. (66) describes the
distribution of the particle separations Rnm!Rn#Rm or
of the relative positions R!̃ !(R1#R̄, . . . ,RN#R̄).

As for two particles, we expect that when $→0 the
multiparticle Green functions PN tend to (possibly dis-
tributional) limits that we shall denote by the same sym-
bol. The limiting PDF’s are again expected to show a
different short-distance behavior for smooth and non-
smooth velocities. For smooth velocities, the existence
of deterministic trajectories leads for $!0 to the col-
lapse property

lim
rN→rN#1

PN"r!;R! ;t #!PN#1"r!!;R! !;t #""RN#1#RN#,

(67)

where R! !!(R1 , . . . ,RN#1) and similarly for the relative
PDF’s. If all the distances among the particles are much
smaller than the viscous cutoff, the velocity differences
are approximated by linear expressions and

P̃N"r!;R! ;t #!! " %
n!1

N

""Rn"!#W" t #rn## d!. (68)

The evolution matrix W(t) was defined in Eq. (16) and
the above PDF’s clearly depend only on its statistics
which has been discussed in Sec. II.B.

2. Multiparticle motion in Kraichnan velocities

The great advantage of the Kraichnan model is that
the statistical Lagrangian integrals of motion can be
found as zero modes of explicit evolution operators. In-
deed, the crucial simplification lies in the Markov char-
acter of the Lagrangian trajectories due to the velocity
time decorrelation. In other words, the processes R! (t)
and R!̃ (t) are Markovian and the multiparticle Green
functions PN and P̃N give, for fixed N , their transition
probabilities. The process R! (t) is characterized by its
second-order differential generator MN , whose explicit
form may be deduced by a straightforward generaliza-
tion of the path-integral representation (52) to N par-
ticles. The PDF PN(r!;R! ;t)!e $t#s$MN(r!;R! ) with

MN! !
n ,m!1

N

Dij"rnm#&rn
i &rm

j "$ !
n!1

N

“rn

2 . (69)

For the relative process R!̃ (t), the operator MN should
be replaced by its translation-invariant version

M̃N!# !
n$m

'dij"rnm#"2$( ij)&rn
i &rm

j , (70)

with dij related to Dij by Eq. (47). Note the multibody
structure of the operators in Eqs. (69) and (70). The
limiting PDF’s obtained for $→0 define the heat kernels
of the $!0 version of the operators that are singular
elliptic and require some care in handling (Hakulinen,
2000).

As we have seen previously, the Kraichnan ensemble
may be used to model both smooth and Hölder continu-
ous velocities. In the first case, one keeps the viscous
cutoff * in the two-point correlation (46) with the result
that dij(r)!O(r2) for r%* as in Eq. (29), or one sets
+!2 in Eq. (48). The latter is equivalent to the approxi-
mation (68) with W(t) becoming a diffusion process on
the group SL(d) of unimodular matrices, with an explic-
itly known generator, as discussed in Sec. II.B.2.a. The
right-hand side of Eq. (68) may then be studied by using
the representation theory (Shraiman and Siggia, 1995,
1996; Bernard et al., 1998), see also Sec. II.E.5 below. It
exhibits the collapse property (67).

From the form (70) of the generator of the process
R!̃ (t) in the Kraichnan model, we infer that N fluid par-
ticles undergo an effective diffusion with the diffusivity
depending on the interparticle distances. In the inertial
interval and for a small molecular diffusivity $, the ef-
fective diffusivity scales as the power + of the interpar-
ticle distances. Comparing to the standard diffusion with
constant diffusivity, it is intuitively clear that the par-
ticles spend longer time together when they are close
and separate faster when they become distant. Both ten-
dencies may coexist and dominate the motion of differ-
ent clusters of particles. It remains to find a more ana-
lytic and quantitative way to capture those behaviors.
The effective short-distance attraction that slows down
the separation of close particles is a robust collective
phenomenon expected to be present also in time-
correlated and non-Gaussian velocity fields. We believe
that it is responsible for the intermittency of scalar fields
transported by high Reynolds number flows, as it will be
discussed in the second part of the review.

As for a single particle, the absolute motion of N par-
ticles is dominated by velocity fluctuations on scales of
order L . In contrast, the relative motion within the in-
ertial range is approximately independent of the velocity
cutoffs and it is convenient to take directly the scaling
limit *!0 and L!, . We shall also set the molecular
diffusivity to zero. In these limits, M̃N has the dimen-
sion length+#2, implying that time scales as length2#+

and

P̃N"-r!;R! ;t #!-#(N#1)dP̃N"r!;-#1R! ;-+#2t #. (71)

The relative motion of N fluid particles may be tested by
tracing the time evolution of the Lagrangian averages

.f„R! " t #…/!! f"R! #P̃N"r!;R! ;t #dR! ! (72)

of translation-invariant functions f of the simultaneous
particle positions. Think about the evolution of N fluid
particles as that of a discrete cloud of marked points in
physical space. There are two elements in the evolution
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Zero modes are non-typical functions
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tion as that of the mean position R̄!!nRn /N . When the
particles separate beyond the velocity correlation length,
they are essentially independent. The absolute motion is
then diffusive with the diffusivity N times smaller than
that of a single particle. The relative motion of N par-
ticles may be described by the versions of the joint
PDF’s (65) averaged over rigid translations:

P̃N"r!;R! ;t #!! PN"r!;R! "!! ;t #d!, (66)

where !!!(!, . . . ,!). The PDF in Eq. (66) describes the
distribution of the particle separations Rnm!Rn#Rm or
of the relative positions R!̃ !(R1#R̄, . . . ,RN#R̄).

As for two particles, we expect that when $→0 the
multiparticle Green functions PN tend to (possibly dis-
tributional) limits that we shall denote by the same sym-
bol. The limiting PDF’s are again expected to show a
different short-distance behavior for smooth and non-
smooth velocities. For smooth velocities, the existence
of deterministic trajectories leads for $!0 to the col-
lapse property

lim
rN→rN#1

PN"r!;R! ;t #!PN#1"r!!;R! !;t #""RN#1#RN#,

(67)

where R! !!(R1 , . . . ,RN#1) and similarly for the relative
PDF’s. If all the distances among the particles are much
smaller than the viscous cutoff, the velocity differences
are approximated by linear expressions and

P̃N"r!;R! ;t #!! " %
n!1

N

""Rn"!#W" t #rn## d!. (68)

The evolution matrix W(t) was defined in Eq. (16) and
the above PDF’s clearly depend only on its statistics
which has been discussed in Sec. II.B.

2. Multiparticle motion in Kraichnan velocities

The great advantage of the Kraichnan model is that
the statistical Lagrangian integrals of motion can be
found as zero modes of explicit evolution operators. In-
deed, the crucial simplification lies in the Markov char-
acter of the Lagrangian trajectories due to the velocity
time decorrelation. In other words, the processes R! (t)
and R!̃ (t) are Markovian and the multiparticle Green
functions PN and P̃N give, for fixed N , their transition
probabilities. The process R! (t) is characterized by its
second-order differential generator MN , whose explicit
form may be deduced by a straightforward generaliza-
tion of the path-integral representation (52) to N par-
ticles. The PDF PN(r!;R! ;t)!e $t#s$MN(r!;R! ) with
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N
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For the relative process R!̃ (t), the operator MN should
be replaced by its translation-invariant version
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with dij related to Dij by Eq. (47). Note the multibody
structure of the operators in Eqs. (69) and (70). The
limiting PDF’s obtained for $→0 define the heat kernels
of the $!0 version of the operators that are singular
elliptic and require some care in handling (Hakulinen,
2000).

As we have seen previously, the Kraichnan ensemble
may be used to model both smooth and Hölder continu-
ous velocities. In the first case, one keeps the viscous
cutoff * in the two-point correlation (46) with the result
that dij(r)!O(r2) for r%* as in Eq. (29), or one sets
+!2 in Eq. (48). The latter is equivalent to the approxi-
mation (68) with W(t) becoming a diffusion process on
the group SL(d) of unimodular matrices, with an explic-
itly known generator, as discussed in Sec. II.B.2.a. The
right-hand side of Eq. (68) may then be studied by using
the representation theory (Shraiman and Siggia, 1995,
1996; Bernard et al., 1998), see also Sec. II.E.5 below. It
exhibits the collapse property (67).

From the form (70) of the generator of the process
R!̃ (t) in the Kraichnan model, we infer that N fluid par-
ticles undergo an effective diffusion with the diffusivity
depending on the interparticle distances. In the inertial
interval and for a small molecular diffusivity $, the ef-
fective diffusivity scales as the power + of the interpar-
ticle distances. Comparing to the standard diffusion with
constant diffusivity, it is intuitively clear that the par-
ticles spend longer time together when they are close
and separate faster when they become distant. Both ten-
dencies may coexist and dominate the motion of differ-
ent clusters of particles. It remains to find a more ana-
lytic and quantitative way to capture those behaviors.
The effective short-distance attraction that slows down
the separation of close particles is a robust collective
phenomenon expected to be present also in time-
correlated and non-Gaussian velocity fields. We believe
that it is responsible for the intermittency of scalar fields
transported by high Reynolds number flows, as it will be
discussed in the second part of the review.

As for a single particle, the absolute motion of N par-
ticles is dominated by velocity fluctuations on scales of
order L . In contrast, the relative motion within the in-
ertial range is approximately independent of the velocity
cutoffs and it is convenient to take directly the scaling
limit *!0 and L!, . We shall also set the molecular
diffusivity to zero. In these limits, M̃N has the dimen-
sion length+#2, implying that time scales as length2#+

and

P̃N"-r!;R! ;t #!-#(N#1)dP̃N"r!;-#1R! ;-+#2t #. (71)

The relative motion of N fluid particles may be tested by
tracing the time evolution of the Lagrangian averages

.f„R! " t #…/!! f"R! #P̃N"r!;R! ;t #dR! ! (72)

of translation-invariant functions f of the simultaneous
particle positions. Think about the evolution of N fluid
particles as that of a discrete cloud of marked points in
physical space. There are two elements in the evolution
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depends only on the shape

A generic scaling function grows in time a là Richardson in order to be a zero mode the 
shape evolution should compensante for the size growth

<latexit sha1_base64="gYCemsZQNG9FjddA6TPaqjBpU5Y="></latexit>

= t
�

2�⇠

Z
f(R̃)PN (R̃, 1)dR̃



Multi-particle separation
In the Kraichnan model zero modes exist also for 


And are expected to exist also for generic velocity fields (i.e. non reversible, 

non Markovian and non Gaussian, though for such (general velocities)


nobody knows the operator 

ξ ≠ 0/2

In non-smooth flows the combination of explosive 
separation and zero modes has important consequences 

on the transport of substances



Summary and take home messages
Single particle dispersion is typically diffusive unless long anomalous correlations are present


two (N=2) or many particle (N>2) dispersion probe the spatial statistics of velocity field

 N=2 particle is qualitatively fitting Richardson picture though several difficulties make its 

experimental and numerical observation non trivial especially when interested to high order 
statistics

 While in smooth velocity fields the Lagrangian flow is preserved in rough velocity fields 

one has explosive separation, the Lagrangian flow breaks and become spontaneously 
stochastic  
 N>2 particle dispersion leads to account not only for the evolution of the size but also of the 

shape which is in general non trivial 

There is a clean framework (The Kraichnan model) where both N=2 and N>2 particle 

dispersion can be studied 

The study of the Kraichnan model highlights the existence of zero modes: function of 

relative separation of the particles statistically conserved by the Lagrangian dynamics
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