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Outline -topic 2-

Brief recall of single particle dispersion in turbulence

Relative dispersion of two particles: Chaos, Richardson dispersion +
intermittency, explosive separation

Some ideas on multiparticle dispersion, shape and size evolution, zero
modes



Single particle: absolute dispersion

X =u(X,t)+ /2Dyn(t) We consider small particles with same density as the fluid: no inertia
Gaussian noise <77® (t)> — (0 <77,L (t)nj ( )> — 52] 5( )

A simple limiting case

no flow (Brownian diffusion)

X =+/2Dgn(t)
t
Xz(t —Xi O =\ 2D0/ dS??z S

(X(t) — _2D0/ds/ds ) = 2Dyt

s—s)



Single particle: absolute dispersion

Another limit: no noise (only advection)

X=V{#t)=u () — X, :ts‘s Xi(t) — X; 2:tds tds’VV
t) = u(X(1),t) X (t) — X:(0) /Od Vis)  ([Xa(D) O)1%) /0 /O (Vi(s)Vi(s))
by stationarity
Lagrangian Correlation function  (V;(s)V;(s")) = Cii(s,s") = Cii(s — ')
([X /ds/ds Cii(s —3’):2/0 ds/osds’Cii(s—s’):2/O dS/OSdTCZ‘i(T)
CW(T) Lagrangian correlation time

_[drCu(r) 0 -x0P ={ 5oy 1o

T
e.g. | c C.(0
C‘I*(?(T) = <V2>(,’_T/T(' ( )

C(0) = (V?) D¥ = C(0)r.
c Eddy diffusivity




Single particle: superdiffusion

What does happen if the correlation function is not integrable? i.e. if the correlation time is not finite

> drCy
Te = fO ’ (T) =0

C3i(0)

Superdiffusion (Anomalous diffusion)

(X () — X;(0)]%) ~t* a>1

In turbulence the correlation time is finite and thus
we do not expect anomalous diffusion for the single particle
But the long time diffusive behavior will be much faster than in the absence of flow

due to eddy diffusivity DX ~ TCU2



Relative dispersion

X1:U(X1,t> . .
. R=X,-X4 R=u(X;+R,t) —u(X1,t) = dru

Relative dispersion depends on the two-point properties of the velocity field

Different behaviors depending on the initial separation

R = |R| Ao, u - 7“1/3
| R<n—dpux R
I n< R<L—dpuox RY? X T
" R> L — éru  (Gaussian uncorrelated variables)

N
N

The third regime is like Brownian diffusion with an enhanced diffusion coefficient R 3 / 4
what about the other two regimes? €



Relative dispersion: small separation

. Ou;
R=|Rl<n R=AR Ay=5"
J

In 3D even for non turbulent flows (i.e. laminar flows) particles separate exponentially due to chaos!

R(t) ~ R(O)eklt )\1 > O the maximal Lyapunov Exponent
R(t) — W(O, t)R(O) W(0,t) =T exp [/OtA(s)ds]

V-u=0—~TrlAl=0

1/2
[WT(O,t)W(O,tZ] = V(xo,t) = Q(xo,t)D(x0, t)Qf (x0,t) D(xp,t) = diag{e”l(“’m”’ o ’et’m(mo,t)}

w

positive and symmetric finite time Lyapunov exponents

Oseledec Theorem

Yi(To,t) —— Ai(To) = A
=00 if ergodic

/\1 > /\2 > .02 )\d Lyapunov exponents



Relative dispersion: small separation

Art
A => growth rate of infinitesimal segments *® o L(t) = L(0)eM
M\, => growth rate of infinitesimal surfaces [ | A(t) = A(0)eP1+ra)t
A+A,+h; => growth rate of infinitesimal volumes

incompressibility conservation of volumes

du;
. V.u=0Tr[A] =0 A A A2+ A =0

aZCj

R:AR A =

Chaotic stretching Nonlinear effects lead to folding

o e

Stretching and folding are at the base of mixing
in laminar flows



Relative dispersion: small separation

Finite Time Lyapunov Exponent 008
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Relative dispersion: small separatlon

K41 D. Ruelle, Phys. Lett. 72A, 81 (1979)
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Dispersion in the inertial range: Richardson

The history of relative dispersion in turbulence starts with
Richardson (1926) predating K41 ;3 /
From experimental observations of the evolution of the separation == A
of balloons in the atmosphere 2 g
v ' v
4/3 % ) b
Dturbo(R> ~ R z / \
- _2 2 E \ ) ®
atP =R 8R [D(R)R 8RP] x 2 L. F. Richardson (@)
R =)AR t' =)\ g
N
A%y P = A"23R'"20p/[D(R')R'*Or P) 2
a
invariantif a = 2/3 — R ~ £3/2 82 2 //
J o/
SO we expect ; }
0 5 0
(R2(t)) ~ t3 LOG,, (SEPARATION L in cM)

Fig. 5. Figure from the original Richardson’s paper [8] representing the experimental results of the diffusivity D measured as a function of I, i.e.
distance separation between two particles. Starting from these data, Richardson proposed his famous 4/3 law drawn in the figure.
Source: Reproduced from [8].

L.F. Richardson, Proc. Roy. Soc. A 110, 709 (1926).



Dispersion in the inertial range: Richardson

R = w(X: + R, t) — u(X1,t) = Spu Consistent with K41

4/3
88—22 =2R - Spu ~ 2R(eR)'/? = 2¢1/3RY/3 Dturbo (R) ~ R /
—2 2 1 9R2/3
0P =R 5’R[D(R)R 8RP] P(R,t) x (De/31)072 exp (_4D€1/3t> <R2 (t)> _ get3
R*R*dR

D(R) = De'/3R*/3
NB: the underlying assumption of Richardson diffusion equation is time decorrelation
t t
In analogy with single particle dispersion we can write <<R(t) - R(O>)2> = / ds / d3/<5RU(3)5RU(3/>>
0 0

(@02 ~ 2~ S = [ ru(5m0() = 27ult)0re?

(6rv?) ~ (RP(1))'/? ~t To(t) ~ (R2(£))1/3 ~ ¢

which implies that 6;v remains correlated invalidating the approach

G. Falkovich, K. Gawe,dzki, M. Vergassola Rev. Mod. Phys. 73, 913 (2001)



Dispersion in the inertial range: Richardson

Persistence of correlations
Shnapp, et al (2023). Nature Commu, 14(1), 4195.

R = U(Xl + R, t) — U(Xl, t) = (SR’U; 90 —\ 90 7 Ballistic decrease
O R2 1 Inertial-range
— =2R. 5R’u, 80 1 4% plateau
ot ..
. “ )\ \ ——
OR R-0ru = 70 : —
o R
60
0 R- 5R'u, 1 OR
COS U = = o from 0 to
Rogu  bpu Ot I e
0 5 10 15 20 25

When is the diffusive equation valid? /=
I. M. Sokolov, PRE 60.5 (1999): 5528.

Richardson
R\ “ o a = f = 2/3 is marginal!
<(5RU)2> ~ (5LU)2 (f) ) + 6 <1 Diffusion eq holds if the displacement from R
B 5 5 to R+Aj in a time 75 is much smaller than R
n~Tg E OtP = R “0g [D(R)R 8RP] R\ 0/2+8
L D(R) ~ ROH_B AR ~ 5R’U;TR ~ orull (z)



Richardson diffusion: refined view

So far we ignored the initial separation Ry = R(0)

Typical time at scale R

R R 2/3

L

So we should expect that if we start with R, € [#, L] the initial velocity 5R0u will be “maintained” for a time 7(R,))

Therefore 0 < 1 < 7(R;)) we should expect a “ballistic” regime

10000

(R*(1)) = ((Opou)*) *

(so-called Batchelor dispersion)

This adds some difficulties in observing Richardson dispersion for large initial separations

EXP R, in the inertial range
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Richardson diffusion: refined view

N. Ouellette, et al NJP 8, 109 (2006)

([R(t) — Rol*) = {(0r,u - Or,u))t* + (O, u - Or,@)t” + o(t”)

~ —2¢
J.Mann, S. Ott, & JS Andersen (1999)

RJ.Hill JoT 7, N43 (2006)

to = S2(ro)/(2¢)

time scale for the end of the ballistic regime

The data collapse extends to times larger than 7y, when
the mean-squared separation tends to Richardson ¢ regime.
This unexpected fact implies that ¢, is not only the time
scale of departure from the ballistic regime, but also that of
convergence to Richardson’s law. More precisely, numerical
data suggest that for ¢ > 1,

(18x(t) — 8x(0)|*),, = get’ [1 + Cty/t] +hoot. (4
C does not strongly depend on the Reynolds number. Sys-
But depends on the initial separation!
C = C(Ry)

C=0 for Ry=4n
Optimal choice
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FIG. 1. (Color online) Time evolution of the mean-square sepa-
ration for R, = 730 and various initial separations. The dashed line
represents the behavior (2). The solid line is a fit to the Richardson
regime (4) with ¢ = 0.52 and C = 1.6. Inset: f, as a function of
ro in dissipative-scale units. The solid line is an Eulerian average,
the circles are Lagrangian measurements, and the dashed line is the
turnover time 7 ().

R. Bitane, H. Homann, J. Bec PRE 86,045302(R) (2012)
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Richardson diffusion:

refined view
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Figure 2. Time-evolution of the mean-squared distance for R, = 730 (a) and R, = 460 (b) for
various initial separations r, as labeled. The horizontal and vertical solid lines represent the integral
scale L and its associated turnover time 7, , respectively. The dashed line corresponds to the explosive

Richardson—Obukhov law (3) with g = 0.52.

R. Bitane, H. Homann, J. Bec JoT 14:2, 23-45 (2013)

In the EXP only quite large initial separation were available and they could not be followed for a long time

that’s why only the ballistic (Batchelor) regime was found



Richardson diffusion: refined view

How good is Richardson PDF with respect to data?

increasing 10
timelag ~ 10
10712

RZ R2/3 10%
(R2(t))3/2

P(R, t) X exp —AW 1070 t Richardson -

1071

FIG. 3. Log-lin plot of P(r,, t) versus the rescaled variable r,
(see text) for r= (20,30, 40, 60,90, 120)7,. The distribution
P(r,, 1) has been divided by a factor r2 to highlight the large
separation range. The Richardson prediction, Eq. (4), becomes
time independent if rescaled in this way (solid curve). Inset:
PDFs plotted only for separations r, that, at time lag ¢ €
[10:120]7,, belong to the inertial subrange.

<RO>pr) /4 rd)
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0 2 12 10l @t=25t, A '*D\\‘\‘\Xf:— 10 b)t=5t =, \‘g‘\:;
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FIG. 2. Probability distribution function of relative separations [r/ <R@P>" [r/<R@P>"
at three different times. The continuous line is the Richardson
prediction (3), and the dashed line is the Gaussian distribution Figure 6. Probability density function of the distance r attime r = 2.5, (a) and t = 5, (b) and for
proposed by Batchelor. various values of the initial separation. We have here normalized it by 4772 and represented on a log y
axis as a function of r/{| R(¢)|?)'/?. With such a choice, Richardson’s diffusive density distribution
G. Boffetta & |. Sokolov PRL 88, 094501 (2002) (2) appears as a straight line (represented here as a black dashed line).

R. Bitane, H. Homann, J. Bec JoT 14:2,23-45 (2013)



A source of difficulties

r~7

Richardson
Explosive Separation

r ~ 10n
t—to ~ 107‘,7

T'NL()I
t—to ~ 757‘,7

initial condition

T~

/V/\ t=t,

R. Scatamacchla?.f’f. Biferale & F. Toschi PRL 109, 144501 (2012)
but see also R. Bitane, H. Homann, J. Bec JoT 14:2, 23-45 (2013)

coexistence of pairs separating very fastly and pairs remaining close to each other for a long time
this makes very difficult to interpret statistics at fixed times



Richardson diffusion: are there effects of intermittency?

3
<Rp (t)> ~ th Bp = 5]9 dimensionally from Richardson

What do we expect according to MF model?

dRP
<%> — p<Rp—15Ru> qRP R p—1+h+3—D(h)
\" <—> :péLuLp_l/dh (—)
5Ru ~ 5Lu (—) dt L
L
MF relation betwefn;imes and scales <dRp> Ip " ( ; ) p—l—f—f;—l;?;L—D(h)
, —1+h+3-D(h . (p+3-=D(h
Bp:Hmén{p 1-h ()}:mén{ 1—h()}



Richardson diffusion: are there effects of intermittency?

3
<Rp (t)> ~ tﬁp Bp = 5]? dimensionally from Richardson

_ (p—14h+3—D(h) _ (p+3—D(h)
= 1 =
By +m}3n{ T min )
14 L. Biferale, A. S. Lanotte, R. Scatamacchia, and F. Toschi
p=2 o JFM 757, 550-572 (2014)

14 | ]
2P0 I — = Richard 1

pr=3 ﬂp
(R*(t)) = get”

o N A O

0 2 4 6 8 10

FIGURE 9. Multifractal exponents for pair separation statistics, derived from the scaling expo-
nents of the Eulerian longitudinal structure functions, Dr,(h) (O), and from the scaling exponents
of Eulerian transversal structure functions, Dr(h) (O). The continuous line is the dimensional
Richardson scaling, a(p) = 3p/2.
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Richardson diffusion: are there effects of intermittency?
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R. Bitane, H. Homann, J. Bec JoT 14:2,23-45 (2013)
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Richardson diffusion: intermittency & exit times °[ A

A possibility to mitigate the statistical effects of pairs that separates quickly
or remains close for a long time is to look at the exit time statistics

Time for R(t) to pass from R to pR with p > 1 this eliminates part of the problem
with fixed time statistics and focus on the spatial scale avoiding averaging events

which at the same time involve very different scales.
T(R)={R(t)=R & R({t+T(R)) =pR}

Then one can study their statistics

R R 1—h
R~ o (2
T( ) 5Ru L L
1 i / dh E —p+hp+3—D(h) i E Op
Te(R)) " TP 3 AV

O'p:Cp_p

2
K41+Richardson 0, = —7

3
G. Boffetta & I. Sokolov PRL 88, 094501 (2002)

G. Boffetta, A. Celani, A. Crisanti, A. Vulpiani, PRE 60, 6734 (1999)
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FIG. 3. First moments of the inverse doubling time
({1/T(R)]?) compensated with Kolmogorov scaling R~2"/3.
Deviations from dimensional compensation are evident, in par-
ticular for p = 4. In the inset we plot the compensated mean
doubling time according to (6) together with the estimate cor-
responding' to C, = 0.55.
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Richardson diffusion & role of intermittency
Not completely settled
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Richardson dispersion & irreversibility

<

(J0R(=t)]*) — (JoR(t)[*)

(|R(t) — Rol*) = ((Orou - Sryw))t* + (O, u - dRya)t® + o(t”)
~ —2¢
J. Mann, S. Ott, & JS Andersen (1999)
R.J. Hill JoT 7, N43 (2006)

Backward separation is faster than forward separation

(t)|*) = pos t* + neg t°

—2xneg || = 4et®

5.0 m 105101-8 Buaria, Sawford, and Yeung Phys. Fluids 27, 105101 (2015)
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FIG. 4. Forwards relative dispersion (solid lines) and backwards relative FIG. 1. (color online). The difference between the backward 107 __, o 3 > 3 1072 __1 5 ; 5 5
dispersion (dashed lines) for initial separations ry/ n:%, 1, 4, and 16 as and forward mean squared relative separation, (SR(—t)? — 10 10 10 10 10 10 10 10 10 10
labeled for DNS calculations at Rey =38. dR(t)?), compensated using Eq. (5). The symbols correspond t/t, t/ty

to experiments: circles for Ry = 690 (Ro/n = 267, 333, 400),
stars for Ry = 350 (Ro/n = 152, 182, 212), and squares for
Ry = 270 (Ro/n = 95, 114, 133). The lines correspond to
DNS at Ry = 300 (Ro/n = 19, 38, 58, 77, 92, 123).

B. L. Sawford et al
PoF 17, 095109 (2005)

FIG. 2. Mean-squared relative displacement as a function of forward time (solid lines, in red) and backward time (dashed
lines, in blue) at R, 140 (left) and 1000 (right), scaled by Kolmogorov variables, for different initial separations. Arrows
indicate direction of increasing 7, in logarithmically spaced intervals: 7o/n =1/4, 1, 4, 16, 64, 256, and 1024 for R 4 140;

Fo/n =1, 4, 16, 64, 256, 1024, and 4096 for R ; 1000. (Results at 7y/77 = 1/4 for R 4 1000 are not shown since they are not

J Jucha et al. PRL 113.5 (2014): 054501.

well sampled.)



Richardson dispersion on the field
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Figure 6

Mean square separation distance versus time obtained from time-shifted float data during the TOPOGULF experiment: (#) western
floats and (b) eastern floats. 79 < 7.5 km for the 10-day (crosses) and 60-day (open diamonds) reinitialized time series. Asterisks give the
corresponding evolution for portions selected with the minimum separation criterion. This consists of finding the minimum separation
distance over the entire lifetime of the pair and recording the evolution for 120 days thereafter. The remaining record is then searched
for a new minimum and the process is repeated. Numbers of pairs are indicated within parentheses. ay and af are numerical
coefficients, and Kg(co) and Kjp{oo) are the diffusion coefficients in the diffusive limit. Figure adapted from Ollitrault et al. 2005.

Ollitrault M, Gabillet C, de Verdie're AC. 2005. Open ocean regimes of relative
dispersion. J. Fluid Mech. 533:381-407

‘Two-Particle Dispersion in
Isotropic Turbulent Flows
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Fig. 6. Scale-dependent relative diffusivities. Lower left axes: Tracer-based
diffusivity estimates based on fitting ellipses. The solid red, green, and blue
symbols show Okubo (36) estimates of K,(3c) = c%/4t. Corresponding esti-
mates from the S1 drifter data are shown by solid black squares. Upper right
axes: Scale-dependent mixing length diffusivities, K;(r) = rAv(r), observed in
81 launch plotted with uncertainty estimates in solid black lines and filled
black circles. Richardson-Obukhov scaling law, K;(r) ~ 3 is indicated.

Poje, Andrew C., et al. "Submesoscale
dispersion in the vicinity of the Deepwater
Horizon spill." PNAS 111.35 (2014):
12693-12698.

Juan P.L.C. Salazar and Lance R. Collins Annu. Rev. Fluid Mech. 2009. 41:405-32



Richardson diffusion: why so difficult?

Which are the difficulties in studying Lagrangian dispersion ?

1 need to accurately know the spatial statistics of the flow velocity along
Lagrangian paths high-resolution, high frequency

2 need scale separation to disentangle different dispersion regimes:
exponential, ballistic, turbulent,..

3 need to have high statistical accuracy : long records along many Lagrangian
paths

4 need to limit the impact of inhomogeneities (walls, borders), unsteadiness,
anisotropies, stratification

Finite Re effects are very severe Persistency of correlations
907 L a 901 Ballistic decrease
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Breakdown of the Lagrangian flow

if f is continuous with the Lipschitz condition
(essentially if f is differentiable)

1f(z) = fFy)ll < K|z -yl

be f a smooth velocity field . : . .
4 The solution exists and is unique

p(x,tly, s) = d(x —z(t;y, s))

C;—C::f(az) x € R

yet lim |6a(¢)| = 0
e—0

dx(t) = x'(t) — =(t)
dx(0) = x'(0) —x(0) =¢

in the presence of chaos |5;1;(t)| — eeMt

o _ () + /2Dgn (1)

dt
op(@,t)+ Vi@p(@ )~ Dodp(e.t) =0 lm p(a,tly,s) = o(x —x(t;y, s))

p(x,s) = d(z —y)



Breakdown of the Lagrangian flow

dx . i g 1/3
i u(x) be uanon smooth incompressible velocity field e.g. jpu ~ R
1d example
dR §ou— RV
@§p(m t) u(x) - Vp(x,t) — DoAp(x,t) =0
H(#),5) = 0(x — y)

le(citgggz{ (ttIy, 3 7’@%

weak solution

Oifle (= 3 prit w(gc)> ¥P(x,t) =0

time

R = [5(t-9) "

but for ¢ = 0 also R(#) = 0O is a solution

the Lagrangian flow breaks a trajectory is
no more labeled by its initial condition



Breakdown of the Lagrangian flow

We shall come back to this explosive separation when discussing the transport of substances in turbulent flows



A clean framework for (not only) Richardson dlspersmn

The Kraichnan model (r. H. kraichnan, PoF 11,11, 945 (1968))

r=v(r,t) + V2kn

v(r,t) zero mean Gaussian velocity field with correlation <U i(l‘,t)vj(l" ,l" )> =2 5(1‘ —t' )Dij(l‘— r’ )

. 1 N - pipl rough smooth
D(r)=D¢8" = 5d"(r) limd”(r)=D1r§((d—1+§)5”—§r—2> 0<é<?
7n—0
L —oo

NB: is an incompressible ensemble of velocities

Z&ni(vi(r t)v? (v, 1) 28 “(r, t)0 (v, 1) »Za DY (r —7) Zaerij(r—r’):O
J

)

the delta correlation makes the dynamics of particles reversible

B. Shraiman & E. D. Siggia. Nature 405, 639 (2000) G. Falkovich, K. Gawedzki, M. Vergassola. RMP 73, 913 (2001)



A clean framework for (not only) Richardson dispersion

(v'(r,)v/(x',t"))y=28(t—t")D"(r—1")

) I R, i
D”(r)=D05’]—§d”(r) limd7(r)=Dré| (d—1+§&) 67— & 2
7—0
L —

Two particles joint probability at two different times —
obeys the (at_Mz)Pzz5(f_5)5(R1_1’1)5(R2—1’2)
(p(r;,s;Ry,1|V)p(ry,5;R,,t|V))=P,(x;,x5;R; ,Ry;t—s) equation 2 ) 2
Y & M,= >, Di(r,—r,)V,iV,i +k> V?
n n' n=1 n

n,n' =1

relative motionr =, —rnandR =R, — R,

£=2 ImP(r;R;t)=06(R)

r—0
(0y — M)P(r; R,t) = 6(t)6(R — 1) k=0 pd-1 R2-€
M= La [(d—1)Dr¢ 642,77 10 0<€éE<?2 IimP(r;R;t) TTarz=¢) €Xp| —constXx ]
I"d_l r 1 r r—0 |t| |t|
k—0

(R2(1) o ¢2/(279

B. Shraiman & E. D. Siggia. Nature 405, 639 (2000) G. Falkovich, K. Gawedzki, M. Vergassola. RMP 73, 913 (2001)



Multi-particle separation




Multi-particle separation

N particles 7; = v(r;,t) +V2kn;  i=1,...,N _  The relative motion of N par-
ticles may be described by the versions of the joint

) i PDF’s (65) averaged over rigid translations:
Multiparticle propagator

N Pn(r;R;t)= J Pn(r;R+pst)dp, (66)
< H p(r,,s;:R, ,t|V)> EPN([;B;I—S) where p=(p,...,p). The PDF in Eq. (66) describes the
n=1 v distribution of the particle separations R,,,,=R,—R,, or

of the relative positions R=(R;—R,...,Ry—R).

R ~ t3/2 turbulence
N=2 we saw that the separation R grows as a power law

R ~ tl/(2—§) Kraichnan

When N>2 besides the evolution of the size we also have evolution of the shape to account for



Mult| -particle separation: e.g.

(Chertkov, Pumir, Shraiman 1999)

po = (X1 + X2 + X3 +X4)/2

p1 = (x1 —X2)/V2
(

)y = (2X3 — Xo0 — X \/6 Regular
P2 3 2 1)/ - LS e ek
ps = (3X4 — X3 — Xo — X1)/V12
Planar
IZITIE.’»I,E;
It can be studied in terms of the eingenvalues “g” of the inertia matrix I = pp" ’
built from vectors py, p2, p3 in the set/of coordinates independent of centre of mass pg
1 .
I . T dgi 00 o r=vg1+g2+9g3= gZ\wi—wﬂ tetrad size
T pp — 0 92 0 i Y Collinear
— Jt — »I. I,
0 0gs < [; = 72’ L+ +1I3=1 teprag shape I lads

I, =1, =13 =1/3 regular
I3 =0 coplanar
I, =13 =0 collinear
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FIG. 1. Evolution of the mean eigenvalues g, (+), g, (X) and g5 (*) of the
moment of inertia matrix I=pp’. The line represents the dimensional scal-
ing £3. In the inset, from top to bottom: evolution at small times of (In A())
(surface), (In R(r)) (distance), (In V(¢)) (volume). The linear slopes of the
three curves in the range of times 7,<7r<<37, yield A;+X,, A, and \;+\,
+ A3, respectively.

Multi-particle separation: N=4
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FIG. 4: Probability density function of shape indices I and
I3 (inset) at times ¢t = 357, (4+) and t = 637, (x). The
full lines are the pdfs for independent, Gaussian distributed
particle positions.

(I;) =0.854 (I) =0.135 (I3) =0.011
In general it was found /, < [; and I; < I, denoting preference for elongated and planar geometries

L. Biferale; G. Boffetta; A. Celani; B. J. Devenish; A. Lanotte; F. Toschi PoF 17, 111701 (2005)
see also A. Pumir, B.l. Shraiman, M. Chertkov PRL 85, 5324 (2000) for a previous study at lower Re



Time evolution of tetrads
in 3D turbulence

Courtesy of Guido Boffetta

L. Biferale; G. Boffetta; A. Celani; B. J. Devenish;
A. Lanotte; F. Toschi PoF 17, 111701 (2005)




Multi-particle separation: N=4
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But:

1. no evidence of 1> size growth

2. difficulty to have long time information due
to finite volume effects in the experiment

3. size of initial tetraedon is quite large

H Xu,, N T. Ouellette, E Bodenschatz. New Journal of Physics 10, no. 1 (2008): 013012.
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Figure 5. The evolution of the PDF of the shape factor (I5) for tetrads with an
initial size of Ry =20 mm. The legends show the time (in units of 7,) at which
the PDFs are measured. Similar changes are observed for tetrads with initial size
of 10 and 15 mm. (a) Ry, = 690 (n = 30 um); (b) R, = 815 (n = 23 um).



Multi-particle separation: Lagrangian average

Letusreconsider 7 = v(r,t) +V2kn (v'(r,t)v/(x',t'))=28(t—t")D7(r—1")
the Kraichnan model

iy 1 y N 2 rough smooth
D”(r):Doﬁ”—zd”(r) limd”(r)ZDlrg((d—1—|—§)5ll_§ > ) O$§$2
7n—0

L—o

For £ = 0 (i.e. rough flow) particles undergo independent Brownian motions
in the limit x — 0
Rij==zi—x; (R}(t)) =r)+Dit  71ij = Ri;(0)
Now consider N=4 particles and functions, f(Ri2, R34) , of their relative separation
eg. f(Ri2, R34) = Ris — R34
Clearly if we average along the Lagrangian trajectories  (f)(t) = (f(Ri2(t), R34(t))) = (R3,(t) — R3,(t)) = %5 — r3, = const

the same happensto  f(Ry2, Ray) = 2(d + 2)R3,R%, — d(R}, + R3,)

An example for smooth flows £ =2 f(R12, R34) = R%2/R§4 indeed [?;; = TijeM

When this happens such functions are called zero modes

How does it work?



Multi-particle separation & zero modes

Be R = (iBl, ro,...,T N)and R the restriction to variables only depending on relative separations of N particles

Lagrangian average (f)(r,t) = <f(B(t7 T)) = / f(E/) ﬁ(f, Rl; t)dR

Kraichnan Model

0Py = MNPy My=—2D, [di(x,,,)+2xk87V iV,

n<m

is self-adjoint

d(f)(r,t) = Y, - Zero modes
= [ Mnf(R)Pn(T; R ;t))dR ) ) -
dt / Moy Zy(R) = 0 d<ZNd>t(L t)

=0

£=0 MN N multidimensional Harmonic e.g. R%Q _ R§,4

Laplacian N — Polynomials
N =4 2(d+2)R7,R3, — d(R{, + R3,)



Zero modes are non-typical functions

Be R = (:131, To,..., T N)and B the restriction to variables only depending on relative separations of N particles

N particles are characterized by the size | and the shape %

Kraichnan Model PN (E, t) = liH(l) Pn (7; R; t) 0<&E<2
0PN = MNPnN T _
_ i} } Py (R,t) = \V"DIDy (AR, A2~5t)
My== 2, [d"(x,,)+28"]V iV,

n=m ~rs o Be f a scaling function
(My] = [L]$2 = [T] ~ [L]2¢ FOAR) = A\ f(R)

1) = [ F@PsE AR =17 [ FORNS VPR Stk
37 [ FORIPYOR N AR =N [ f(R)Py(R N €)dR

N ieee =t / F(R)Py (R, 1)dR
[\

_J
™~~~

depends only on the shape

A generic scaling function grows in time a la Richardson in order to be a zero mode the
shape evolution should compensante for the size growth



Multi-particle separation

In the Kraichnan model zero modes exist also for & # 0/2

And are expected to exist also for generic velocity fields (i.e. non reversible,
non Markovian and non Gaussian, though for such (general velocities)
nobody knows the operator

In non-smooth flows the combination of explosive
separation and zero modes has important consequences
on the transport of substances



Summary and take home messages

@®Single particle dispersion is typically diffusive unless long anomalous correlations are present
®two (N=2) or many particle (N>2) dispersion probe the spatial statistics of velocity field

® N=2 particle is qualitatively fitting Richardson picture though several difficulties make its
experimental and numerical observation non trivial especially when interested to high order
statistics

® While in smooth velocity fields the Lagrangian flow is preserved in rough velocity fields
one has explosive separation, the Lagrangian flow breaks and become spontaneously
stochastic

® N>2 particle dispersion leads to account not only for the evolution of the size but also of the
shape which is in general non trivial

@®There is a clean framework (The Kraichnan model) where both N=2 and N>2 particle
dispersion can be studied

®The study of the Kraichnan model highlights the existence of zero modes: function of

relative separation of the particles statistically conserved by the Lagrangian dynamics
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